PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fertilization and Application of Different Biochar Types and their Mutual Interactions Influencing Changes of Soil Characteristics in Soils of Different Textures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
If we want to develop farming on soil effectively and ecologically, we have to know the soil characteristics, the reasons for the potential low fertility and the ways how to eliminate them. Only this approach allows the rational utilization of the soil fund and achievement of the high effectiveness of the costs needed for the stabilization and increase of fertility and land capability. Recently, many scientific teams have focused their attention on the biochar, a lot of recommendations have been published which are dealing with its application into soil. However, the principal attention has been drawn to the impact of biochar on the particular soils and under the particular conditions. Far less information has been presented about the mutual interactions between the further significant agronomical factors in the combination with biochar. In this primary study, we analyze two new experiments established in the southwest part of Slovakia at the 1 Dolná Streda (sandy soil) and 2 Veľké Uľany (loamy soil) Localities. We discussed (1) the impact of the individual factors on the changes of soil characteristics, and (2) the impact of the individual interactions, such as: soil class – fertilization – biochar on the changes of the soil characteristics. The results indicated that the most significant factor, which influences the monitored soil parameters, is the soil class. The fertilization proved to be a factor which has a negative impact on the humus parameters; on the other hand, it improved the soil sorption. Biochar increased the content of the organic substances in soil and also its environmental effect of retention and immobilization of harmful elements and its positive effect on the soil structure was indicated. The highest frequency of the interactions between the monitored parameters related to the changes of soil characteristics was recorded in the combination fertilization x biochar, and also the soil class x fertilization x biochar.
Rocznik
Strony
149--164
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
  • Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Department of Soil Environment Sciences, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, ul. Nowoursynowska 159, building no. 37, 02-776 Warszawa, Poland
  • Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
Bibliografia
  • 1. Agegnehu G., Bass A.M., Nelson P.N., Bird M.I. 2016. Benefits of biochar, compost and biochar – compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306.
  • 2. Aijun Y., Changle Q., Shusen M., Reardon E.J. 2006. Effects of humus on the environmental activity of mineral-bound Hg: Influence on Hg volatility. Applied Geochemistry, 21(3), 446–454.
  • 3. Ajayi A.E., Horn R. 2016. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil and Tillage Research, 166, 34–44.
  • 4. Amézketa E. 1999. Soil aggregate stability: a review. Journal of Sustainable Agriculture, 14(2–3), 83–151.
  • 5. Atkinson C.J., Fitzgerald J.D., Hipps N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant and Soil, 337, 1–18.
  • 6. Beusch Ch., Cierjacks A., Bohm J., Mertens M., Bischoff W.A., Filho J.C.A., Kaupenjohann M. 2019. Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma, 337, 524–535.
  • 7. Biederman L.A., Harpole W.S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy, 5, 202–214.
  • 8. Bronick C.J., Lal R. 2005. The soil structure and land management: a review. Geoderma, 124, 3–22.
  • 9. Cross A., Zwart K., Shackley S., Ruysschaert G. 2016. The role of biochar in agricultural soils. In: Shackley S., Ruysschaert G., Zwart K., Glaser B. (Eds), Biochar in European Soils and Agriculture. Routledge, London, New York, pp. 73–98.
  • 10. Dziadowiec H., Gonet S.S. 1999a. Estimation of soil organic carbon by Tiurin’s method. Methodical guide-book for soil organic matter studies (in polish). 120, 7–8.
  • 11. Dziadowiec H., Gonet S.S. 1999b. Estimation of fractional composition of soil humus by KononovaBielcikova’s method. Methodical guide-book for soil organic matter studies (in polish). 120, 31–34.
  • 12. El-Naggar A., Lee S.S., Awad Y.M., Yang X., Ryu C., Rizwan M., Rinklebe J., Tsang D.C., Ok Y.S. 2018. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 332, 100–108.
  • 13. El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R., M., Shaheen S.M., Ok, Y.J. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–557.
  • 14. Evangelou M.W.H., Brem A., Ugolini F., Abiven S., Schulin R. 2014. Soil application of biochar produced from biomass grown on trace element contamined land. Journal of Environmental Management, 146, 100–106.
  • 15. Fernández-Ugalde O., Virto I., Bescansa P., Imaz M.J., Enrique A., Karlen D.L. 2009. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil & Tillage Research, 106, 29–35.
  • 16. Fischer D., Glaser B. 2012. Synergisms between compost and biochar for sustainable soil amelioration. In: Kumar S. (Ed), Management of Organic Waste, Tech Europe, Rijeka, pp. 167–198.
  • 17. Fulajtár E. 2006. Soil physical properties. SSCRI, Bratislava, (in Slovak).
  • 18. Głąb T., Palmowska J., Zaleski T., Gondek K. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20.
  • 19. Glaser B. 2007. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 362, 187–196.
  • 20. Green Report. 2014. Green Report for 2013. Národné poľnohospodárske a potravinárke centrum, Bratislava, (in Slovak).
  • 21. Greenland D.J., Rimmer D., Payne D. 1975. Determination of the structural stability class of English and Welsh soil, using a water coherence test. Journal of Soil Science, 26(2), 294–303.
  • 22. Hanes J., 1999. Analyzes of sorptive characteristics. SSCRI, Bratislava, (in Slovak).
  • 23. Heitkötter J., Marschner B. 2015. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production. Geoderma, 245–246, 56–64.
  • 24. Horák J., Kondrlová, E., Igaz, D., Šimanský V., Felber R., Lukac M., Balashov E.V., Buchkina N.P., Rizhiya E.Y., Jankowski M. 2017. Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia, 72(9), 995–1001.
  • 25. Hraško J., Bedrna Z. 1988. Applied Soil Science. Príroda, Bratislava, (in Slovak).
  • 26. Hraško J., Červenka L., Facek Z., Komár J., Něměček J., Pospíšil J., Sirový V. 1962. Soil analyses. SVPL, Bratislava, (in Slovak).
  • 27. Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., Mališ J., Píš V., Schlosserová J., Slávik O., Styk J., Širáň M. 2011. Uniform methods of soil analyses. VÚPOP, Bratislava, (in Slovak).
  • 28. Chintala R., Owen R., Kumar S., Schumacher T.E., Malo D. 2014. Biochar impacts on denitrification under different soil water contents. World Congress of Soil Science, 6, 157–157.
  • 29. Ibrahim E.A., Ramadan W.A. 2015. Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Scientia horticulturae, 184(5), 101–105.
  • 30. Igalavithana A.D., Lee S.E., Lee Y.H., Tsang D.C.W., Rinklebe J., Kwon E.E., Ok Y.S. 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603.
  • 31. Igaz D., Šimanský V., Horák J., Kondrlová E., Domanová J., Rodný M., Buchkina N.P. 2018. Can a single dose of biochar affect selected soil physical and chemical characteristics? Journal of Hydrology and Hydromechanics, 66(4), 421–428.
  • 32. Jeffery S., Abalos D., Prodana M., Bastos A.C., van Groenigen J.W., Hungate B.A., Verheijen F. 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12, 053001.
  • 33. Jurčová O., Bielek P. 1997. Resources and losses of soil organic matter and their balance. Humic Substances in Environment, (in Slovak), 17–24.
  • 34. Kobza J., Barančíková G., Makovníková J., Pálka B., Styk J., Širáň M. 2017. Current state and development of land degradation processes based on soil monitoring in Slovakia. Agriculture (Poľnohospodárstvo), 63(2), 74–85.
  • 35. Kotorová D., Šoltysová B. 2011. Physical and chemical properties of heavy soils. Piešťany: CVRV (in Slovak).
  • 36. Kováčik P. 2014. Principles and methods of plant nutrition. SUA, Nitra, pp. 278. (in Slovak).
  • 37. Laghari M., Mirjat M.S., Z., Fazal S., Xiao B., Hu M., Chen Z., Guo, D. 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135, 313–320.
  • 38. Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.
  • 39. Lehmann J., Joseph S. 2015. Biochar for environmental management. Routledge, Taylor and Francis Group, London, New York.
  • 40. Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. 2011. Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43, 1812–1836.
  • 41. Linkeš V., Kobza J., Švec M. 1997. Monitoring soil of the Slovak Republic. Výskumný ústav pôdnej úrodnosti, Bratislava, (in Slovak).
  • 42. Lu S.G., Sun F.F., Zong Y.T. 2014. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114, 37–44.
  • 43. Mati R., Kotorová D., Gomboš M., Kandra B. 2011. Development of evapotranspiration and water supply of clay–loamy soil on the East Slovak Lowland. Agricultural Water Management, 98, 1133–1140.
  • 44. Mia S., Van Groenigen J.W., Van de Voorde T.F.J., Oram N.J., Bezemer T.M., Mommer L., Jeffery S. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agriculture, Ecosystems & Environment, 191, 83–91.
  • 45. Mukherjee A., Lal R. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3, 313–339.
  • 46. Munkholm L.J., Schjonning P., Debosz K., Jensen H.E., Christensen B.T. 2002. Aggregate strength and mechanical behaviour of a sandy loam soil under long-term fertilization treatments. European Journal of Soil Science, 53, 129–137.
  • 47. Novak J.M., Busscher W.J., Wats D.W., Laird D.A., Ammenda M.A., Niandou M.A.S. 2009. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154, 281–288.
  • 48. Obia A., Mulder J., Martinsen V., Cornelissen G., Børresen T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Reseach, 155, 35–44.
  • 49. Olivares F.L., Aguiar N.O., Rosa R.C.C., Canellas L.P. 2015. Substrate bioforticication of combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae, 183, 100–108.
  • 50. Omondi M.O., Xia X., Nahayo A., Liu X., Korai P.K., Pan G. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34.
  • 51. Peake L., Freddo A., Reid B.J. 2014. Sustaining soils and mitigating climate change using biochar. In: De Las Heras, A. (Ed.), Sustainability Science and Technology. CRC Press, pp. 109–126.
  • 52. Peretyazhko T., Sposito G. 2006. Reducing capacity of terrestrial humic acids. Geoderma, 137(1–2), 140–146.
  • 53. Polláková N., Šimanský V., Kravka M. 2018. The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Journal of Soils and Sediments, 18(8) 2790–2800.
  • 54. Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., Lehmann J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 71–284.
  • 55. Rao C.S., Indoria A.K., Sharma K.L. 2017. Effective management practices for improving soil organic matter for increasing crop productivity in rainfed agroecology of India. Current Science, 112, 1497–1504.
  • 56. Szombathová N. 2010. Chemical and physicochemical properties of humic substances of soil as an indicator of anthropogenetic changes in ecosystems (localities of Bab and Dolná Streda). SPU, Nitra, (in Slovak).
  • 57. Šimanský V. 2015. Fertilization and carbon sequestration. Acta fytotechnica et zootechnica, 18(3), 56–62.
  • 58. Šimanský V., Horák J., Igaz D., Balashov E., Jonczak J. 2018. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. Journal of Soils and Sediments, 18(8), 1432–1440.
  • 59. Šimanský V., Horák J., Igaz D., Jonczak J., Markiewicz M., Felber R., Rizhiya E.Y., Lukac M. 2016. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71(9), 989–995.
  • 60. Šimanský V., Polláková N. 2014. Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. Archives of Agronomy and Soil Science, 60(8), 1145–1154.
  • 61. Šimanský V., Polláková N., Chlpík J., Kolenčík M. 2018. Soil Science. SPU, Nitra, (in Slovak).
  • 62. Šimanský V., Šrank D., Juriga M. 2019. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta Fytotechnica et Zootechnica, 22(1), 21-25.
  • 63. Šimanský V., Tobiašová E., Chlpík J. 2008. Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macro-aggregates. Soil & Tillage Research, 100(1–2) 125–132.
  • 64. Teutscherova N., Vazguez E., Santana D., Navas M., Masaguer M.B. 2017. Influence of pruning waste compost maturity and biochars on carbon dynamics in acid soil: Incubation study. European Journal of Soil Biology, 78, 66–74.
  • 65. Vaněk V., Ložek O., Balík J., Pavlíková D., Tlustoš P. 2013. Nutrition of field and garden crops. Profi Press SK, Nitra. pp. 184. (in Slovak).
  • 66. Whalen J.K., Chang C. 2002. Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Science Society of American Journal, 66, 1637–1647.
  • 67. Wiseman C.L.S., Pütmann W. 2006. Interactions between mineral phases in the preservation of soil organic matter. Geoderma. 134, 109–118.
  • 68. Zaujec A., Chlpík J., Nádašský J., Szombathová N., Tobiašová E. 2009. Pedology and basics of geology. SPU, Nitra, (in Slovaka).
  • 69. Zaujec A., Šimanský V. 2006. The effect of biopreparates of plant resudues on soil structure and soil organic matter. SPU, Nitra, (in Slovak).
  • 70. Zlámalová T., Elbl J., Baroň M., Bělíková H., Lampíř L., Hlušek J., Lošák T. 2015. Using foliar applications of magnesium and potassium to improve yields and some qualitative parame ters of vine grapes (Vitis vinifera L.). Plant Soil Environ, 61(10), 451–457.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2826ae78-2dfd-4542-9f95-1c250a21d745
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.