PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zapobieganie powstawaniu spękań w betonowych nawierzchniach

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Mitigating the cracks in concrete pavements
Języki publikacji
PL EN
Abstrakty
PL
Nawierzchnie betonowe mają duże znaczenie dla zachowania płynności ruchu na drogach. Jednak na tych nawierzchniach mogą powstawać spękania na skutek niepożądanej reakcji kruszyw zawierających aktywną krzemionkę z wodorotlenkami sodu i potasu [RSPK]. Dlatego w wielu częściach świata należy stosować odpowiednie metody, aby uniknąć nadmiernej ekspansji, wywoływanej tą reakcją. Ten artykuł zawiera obszerny opis prac zawartych w literaturze. Dotyczą one szczególnie metod zapobiegających szkodliwej ekspansji towarzyszącej tej reakcji oraz omawiają zalecenia dotyczące oceny i naprawy istniejących konstrukcji. Ogólnie, każda metoda zmniejszania ekspansji w inny sposób wpływa na RSPK. Warunki otoczenia, dobór surowców mieszanki betonowej oraz rodzaje materiału odgrywają ważną rolę w RSPK. Ponadto stwierdzono, że pękaniu betonu wywołanemu przez tę reakcję można zapobiegać nie tylko czynnikami chemicznymi, ale także mechanicznymi. Przeprowadzono doświadczenia, w których wykazano korzystny wpływ żużla i niereaktywnego kruszywa na ograniczenie RSPK. Badania prowadzono w pięciu różnych wariantach. Badano wpływ na ekspansję przez 3, 7 i 14 dni. Dodatkowo stwierdzono, że różne rodzaje kruszywa mogą mieć różny wpływ na ograniczenie ASR.
EN
Concrete pavements has a significant importance for traffic flow. Undesirable cracks can be occurred in pavements by alkali silica reaction [ASR]. Therefore, in many parts of the world, precautions must be taken to avoid excessive expansion due to alkali-silica reactivity in concrete pavements. In this study, an intensive research has been conducted by using literature survey. Additionally, it includes an overview of the nature of ASR, the measure values to prevent deleterious reactions, and recommendations for evaluation and repairing of existing structures. As a result, each reducing method has different effects on ASR. Ambient conditions, ratios of concrete mixture, material types have important roles in ASR. Furthermore, it has been determined that cracks occurred in the concrete due to ASR can be prevented by not only chemical but also mechanical effects. Additionally, for this study some tests were made and results were compared the effects of slag and harmless aggregate on mitigating ASR. Five different conditions were used in the tests and mitigating effects for 3, 7 and 14 days were measured. The results were compared and a suitable condition was advised. Additionally, it was founded that different aggregate types can have different mitigating effect equations.
Czasopismo
Rocznik
Strony
453--467
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
autor
  • Department of Civil Engineering, Hacettepe University, Ankara, Turkey
Bibliografia
  • 1. AS 1141.60.1, Methods for Sampling and Testing Aggregates Part 60.1: Alkali Aggregate Reactivity-Accelerated Mortar Bar Method.
  • 2. AS 1141.60.2, Methods for Sampling and Testing Aggregates Part 60.2: Alkali Aggregate Reactivity-Concrete Prism Method. Sydney.
  • 3. W. F. Cole, C. J. Lancucki, M. J. Sandy, Products formed in an aged concrete, Cem. Concr. Res., 11, 3, 443–454, (1981), DOI: 10.1016/0008-8846(81)90116-2.
  • 4. CSA-A23.1, "Concrete Materials and Methods of Concrete Construction", Appendix B, Alkali-Aggregate Reaction, CAN/CSA-A23.1, Canadian Standards Association, Toronto, Canada 2004.
  • 5. S. Diamond, N. Thaulow, “Study of expansion due to ASR as conditioned by the grain size of the aggregate.” Cem. Concr. Res., 4, 4, 591-607, (1974).
  • 6. C. F. Dunant, K. L. Scrivener, "Effects of aggregate size on alkali–silica-reaction induced expansion.’’ Cem. Concr. Res., 42, 745–751, (2012) DOI: 10.1016/j.cemconres.2012.02.012.
  • 7. J. A. Farny, K. Beatrix, "Concrete technology: diagnosis and control of alkali-aggregate reactions in concrete", Portland Cement Association 2007.
  • 8. Federal Highway Administration. “The Use of Lithium to Prevent or Mitigate Alkali-Silica Reaction in Concrete Pavements and Structures”. Department of Transportation 2007.
  • 9. Federal Highway Administration "Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete- Rationale for the AASHTO PP65 Prescriptive Approach". U.S. Department of Transportation 2012.
  • 10. P. E. Grattan-Bellew, "Alkali contribution from limestone aggregate to pore solution of old concrete", ACI Materials Journal, 91, 2, 173- 177 (1994).
  • 11. S. Han, M. Fang, "Alkali-aggregate reaction under high temperature, high pressure and high alkali content". Journal of Nanjing Institute of Chemical Technology, 2, 1-10 (1984).
  • 12. R. Helmuth, "Alkali-Silica Reactivity: An Overview of Research". SHRP-C-342, Strategic Highway Research Program, Washington, D. C., Also PCA Publication LT177 (1993).
  • 13. D. Hernandez-Cruz, C. W. Hargis, J. Dominowski, M. J. Radler, P. M. J. Monteiro, "Fiber reinforced mortar affected by alkali-silica reaction: A study by synchrotron microtomography". Cem. Concr. Comp., 68, 123-130 (2016), DOI: 10.1016/j.cemconcomp.2016.02.003.
  • 14. Highway Technical Specification, General Directorate of Highways, 2013.
  • 15. D. W. Hobbs, W. A. Gutteridge, “Particle size of aggregate and its influence upon the expansion caused by the alkali-silica reaction.” Mag. Concr. Res., 31, 109, 235-242 (1979).
  • 16. A. Horvath, H. Chris, "Comparison of Environmental Implications of Asphalt and Steel-Reinforced Concrete Pavements". Transportation Research Record, 1626, 105-113 (1998), DOI: 10.3141/1626-13.
  • 17. Y. Kawabata, K. Yamada, "The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion", Cem. Concr. Res., 92, 1-15 (2017), DOI: 10.1016/j.cemconres.2016.11.002.
  • 18. J. Lindgard, Ö. A. Çakır, I. Fernandes, T. F. Ronning, M. D. A. Thomas, “Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing”. Cem. Concr. Res., 42, 223-243 (2012), DOI: 10.1016/j.cemconres.2011.10.004.
  • 19. L. J. Malvar, G. D. Cline, D. F. Burke, R. Rollings, T. W. Sherman, J. L. Greene “Alkali- Silica Reaction Mitigation: State of the art and Recommendations”. ACI Materials Journal, 99, 480-489 (2002).
  • 20. P. K. Mehta, P. J. M. Monteiro "Concrete microstructure, properties and materials", 659, Prentice-Hall Inc., Englewood Cliffs, New Jersey 1993.
  • 21. S. Multon, F. Toutlemonde, "Effect of moisture conditions and transfers on alkali silica reaction damaged structures". Cem. Concr. Res., 40, 6, 924–34 (2010), DOI: 10.1016/j.cemconres.2010.01.011 .
  • 22. S. Nayir, "Investigation on the effects of mineral additives in mitigating of alkali-silica reaction", KTU, 2015.
  • 23. A. M. Neville, “Properties of Concrete.” John Wiley & Sons Inc., New York, U.S.A, 1997.
  • 24. Z. Owsiak, J. Zapała-Sławeta, „The lithium nitrate effect on the concrete expansion caused by alkali-silica reaction in concrete of gravel aggregate”, Cement Wapno Beton, 82, 25 (2015).
  • 25. K. Ramyar, A. Topal, Ö. Andiç, "Effects of aggregate size and angularity on alkali-silica reaction". Cem. Concr. Res., 35, 11, 2165-2169 (2005).
  • 26. A. Saccani, M. C. Bignozzi, "ASR expansion behavior of recycled glass fine aggregates in concrete.’’ Cem. Concr. Res., 40, 531–536 (2010), 10.1016/j.cemconres.2009.09.003.
  • 27. A. K. Saha, P. K. Sarker, "Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars". Construction and Building Materials, 123, 135–142 (2016), DOI: 10.1016/j.conbuildmat.2016.06.144.
  • 28. A. Shayan, R. Diggings, I. Ivanusec “Effectiveness of Fly Ash in Preventing Deleterious Expansion Due to Alkali-Aggregate Reaction in Normal and Steam-Cured Concrete.” Cem. Concr. Res., 26, 1, 153-164 (1996), DOI: 10.1016/0008-8846(95)00191-3.
  • 29. R. G. Sibbick, C. L. Page "Treshold alkali contents for expansion of concrete containing British aggregates". Cem. Concr. Res., 22, 990-994 (1991), DOI: 10.1016/0008-8846(92)90123-D.
  • 30. V. Sirivivatnanon, J. Mohammadi, W. South, "Reliability of new Australian test methods in predicting alkali silica reaction of field concrete". Construction and Building Materials, 126, 868–874 (2016), DOI: 10.1016/j.conbuildmat.2016.09.055.
  • 31. Standards Australia, Aggregates and Rock for Engineering Purposes (AS 2758.1-98), 1998.
  • 32. Standards Australia, Method for Sampling and Testing Aggregates (2014) Potential Alkali Silica Reactivity – Accelerated Mortar Bar Method (AS 1141.60.1-14).
  • 33. D. Stark, B. Morgan, P. Okamoto, "Eliminating or Minimizing Alkali-Silica Reactivity", Strategic Highway Research Program, National Research Council, Washington 1993, DC, 266.
  • 34. Sydney 2014, K. Afshinnia, A. Poursaee, "The influence of waste crumb rubber in reducing the alkali–silica reaction in mortar bars", Journal of Building Engineering, 4, 231–236 (2015), DOI: 10.1016/j.jobe.2015.10.002.
  • 35. R. N. Swamy, M. M. Al-Asali, "Expansion of concrete due to ASR". ACI Materials Journal, 85, 1, 33-40 (1988).
  • 36. W. E. Touma, D. F. Fowler, R. L. Carrasquillo, "Alkali-silica Reaction in Portland cement Concrete: Testing methods and Mitigation Alternatives", Performing Organization Report No. Research Report ICAR 301-1F, International Center for Aggregates Research, The University of Texas at Austin, Texas and Texas A &M University College Station, Texas. 2001.
  • 37. K. Voland, F. Weise, B. Menga, "Alkali-Silica Reaction in Concrete Pavements", Key Engineering Materials, 711, 714-721 (2016), DOI: 10.4028/ www.scientific.net/KEM.711.714.
  • 38. T. Williamson, M. C. G. Juenger, "The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete", Cem. Concr. Res., 83, 124–130 (2016), DOI: 10.1016/j.cemconres.2016.02.008.
  • 39. H. Woods, "Durability of Concrete Construction". Michigan: American Concrete Institute 1968.
  • 40. C. Zhang, A. Wang, M. Tang, B. Wu, N. Zhang, "Influence of aggregate size and aggregate size grading on ASR expansion". Cem. Concr. Res., 29: 1393-1396 (1999), DOI: 10.1016/S0008-8846(99)00099-X.
  • 41. K. Zheng, "Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction", Cem. Concr. Comp., 67, 30-38 (2016), 10.1016/j.cemconcomp.2015.12.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2821b0e4-2895-43c4-b330-1a0ca55cbb9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.