PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The pointwise completeness and the pointwise degeneracy of fractional descriptor discrete-time linear systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Drazin inverse of matrices is applied to analysis of the pointwise completeness and of the pointwise degeneracy of the fractional descriptor linear discrete-time systems. Necessary and sufficient conditions for the pointwise completeness and the pointwise degeneracy of the fractional descriptor linear discrete-time systems are established. It is shown that every fractional descriptor linear discrete-time systems is not pointwise complete and it is pointwise degenerated in one step (for i= 1).
Twórcy
autor
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] M. Busłowicz, “Pointwise completeness and pointwise degeneracy of linear discrete-time systems of fractional order”, Zeszyty Naukowe Pol. Sląskiej, Automatyka 151, 19‒24 (2008).
  • [2] M. Busłowicz, R. Kociszewski, and W. Trzasko, “Pointwise com-pleteness and pointwise degeneracy of positive discrete-time systems with delays”, Zeszyty Naukowe Pol. Sląskiej, Automatyka151, 55‒56 (2008).
  • [3] A.K. Choundhury, “Necessary and sufficient conditions of pointwise completeness of linear time-invariant delay-differen-tial systems”, Int. J. Control 16(6), 1083‒1100 (1972).
  • [4] E. Girejko, D. Mozyrska, and M. Wyrwas, „Behaviour of fractional discrete-time consensus models with delays for summator dynamics”, Bull. Pol. Ac.: Tech. 66(4), 403‒410 (2018).
  • [5] T. Kaczorek, Application of the Drazin inverse of matrices to analysis of the pointwise completeness and the pointwise degeneracy of the descriptor linear systems. 15th International Conference Dynamical Systems Theory and Applications, December 2‒5, 2019, Łódź, Poland (2019).
  • [6] T. Kaczorek, “Drazin inverse matrix method for fractional descriptor discrete-time linear systems”, Bull. Pol. Ac.: Tech. 64(2), 1‒5 (2016).
  • [7] T. Kaczorek, “Pointwise completeness and pointwise degeneracy of standard and positive hydrid linear systems described by the general model”, Archives of Control Sciences 2, 121‒131 (2010).
  • [8] T. Kaczorek, “Pointwise completeness and pointwise degeneracy of standard and positive linear systems with state-feedbacks”, Journal of Automation, Mobile Robotics and Ingelligent Systems4(1), 3‒7 (2010).
  • [9] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer, Berlin 2011.
  • [10] T. Kaczorek and M. Busłowicz, “Pointwise completeness and pointwise degeneracy of linear continuous-time fractional order systems”, Journal of Automation, Mobile Robotics and Intelligent Systems 3(1), 8‒11 (2009).
  • [11] T. Kaczorek, K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer 2015.
  • [12] T. Kaczorek and A. Ruszewski, “Application of the Drazin inverse of matrices to the pointwise completeness and the pointwise degeneracy of the fractional descriptor linear continuous-time systems”.
  • [13] W. Malesza and D. Sierociuk, “Fractional variable order anti-windup control strategy”, Bull. Pol. Ac.: Tech. 66(4), 427‒432 (2018).
  • [14] D. Mozyrska, P. Ostalczyk, and M. Wyrwas, „Stability conditions for fractional-order linear equations with delays”, Bull. Pol. Ac.: Tech. 66(4), 449‒454 (2018).
  • [15] A. Olbrot, “On degeneracy and related problems for linear constant time-lag systems”, Ricerche di Automatica 3(3), 203‒220 (1972).
  • [16] M.D. Ortigueira and J.T.M. Machado, “On fractional vectorial calculus”, Bull. Pol. Ac.: Tech. 66(4), 389‒402 (2018).
  • [17] V.M. Popov, “Pointwise degeneracy of linear time-invariant delay-differential equations”, Journal of Differential Equation11, 541‒561 (1972).
  • [18] W. Trzasko, M. Busłowicz, and T. Kaczorek, “Pointwise completeness of discrete-time cone-systems with delays”, Int. Proc. EUROCON, Warsaw, pp. 606‒611 (2007).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-281805c2-2626-4b2a-a15c-e34b0ffd05df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.