PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Phase Transformation And Mechanical Properties Of Ti-12.1Mo-1Fe Alloy With Nano-Sized Precipitation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przemiany fazowe i właściwości mechaniczne stopu Ti-12.1Mo-1Fe z nanometrycznymi wydzieleniami
Języki publikacji
EN
Abstrakty
EN
Microstructural characterization and aging hardening behaviors of a new designed Ti-12.1Mo-1Fe alloy during solution treatment and aging were investigated in the present study. It is well known that when β-Ti alloys are generally under solution treatment or aging, α phases and ω phases appear or disappear dependent on heat treatment temperature and holding time. It is very necessary to understand the phase transformation phenomenon and to control the microstructure because these phases can control the drastic changes of the mechanical and physical properties of these alloys. According to the calculated [Mo]eq value and the microstructural observation, the β-transus temperature was about 780°. After the solution treatment, this alloy was composed of the β-phase and the microstructure mainly consisted of the equiaxed β grains with the average size of 25 μm. ω phases which were precipitated during aging process, played a more important role to the hardening effect than α phases. The highest hardness value of Ti-12.1Mo-1Fe alloy showed in the condition of the aging temperature of 450°. The hardening due to ω-phase precipitation can lead to a high hardness about 480 Hv but the coarse α-phase result in hardness below 300 Hv.
Twórcy
autor
  • Materials Metallurgical Engineering, Sunchon National University, Suncheon, Korea
autor
  • Qhse Team, Befesa Zinc Korea Co. Ltd, Gyeongju, Korea
autor
  • State Key Laboratory for Fabrication & Processing of Nonferrous Metals, General Research Institute For Nonferrous Metals, Beijing, China
autor
  • Titanium Department, Korea Institute of Materials Science, Changwon, Korea
Bibliografia
  • [1] K. Ida, Y. Tani, S. Tsutsumi, T. Togaya, T. Nambu, K. Suese, T. Kawazoe, M. Nakamura, Dent. Mater. J. 4, 191 (1985).
  • [2] van Noort R., Titanium: the implant material of today. J. Mater. Sci. 22, 3801 (1987).
  • [3] E. P. Lautenschlager, P. Monaghan, Int. Dent. J. 43, 245 (1993).
  • [4] H. Miura, J. Kor. Powd. Met. Inst. 20, 323 (2013).
  • [5] D. J. Lee, D-H. Ahn, B. Lee, J. Jeong, S. H. Oh, C. S. Lee, H. S. Kim, J. Kor. Powd. Met. Inst. 20, 350 (2013).
  • [6] L. D. Zardiakas, D. W. Michell, J. A. Disegi, in: S. A. Brown, J. E. Lemons (Eds.), Medical Applications of Titanium and its Alloys: The Material and Biological Issues, ASTM STP, Vol. 1272, American Society for Testing and Materials, West Conshohocken 1996.
  • [7] A. K. Mishra, J. A. Davidson, R. A. Poggie, P. Kovacs, T. J. FitzGerald, in: S. A. Brown, J. E. Lemons (Eds.), Medical Applications of Titanium and its Alloys: The Material and Biological Issues, ASTM STP, Vol. 1272, American Society for Testing and Materials, West Conshohocken 1996.
  • [8] K. K. Wang, L. J. Gustavson, J. H. Dumbleton, in: S. A. Brown, J. E. Lemons (Eds.), Medical Applications of Titanium and its Alloys: The Material and Biological Issues, ASTM STP, Vol. 1272, American Society for Testing and Materials, West Conshohocken 1996.
  • [9] A. Ito, Y. Okazaki, T. Tateishi, Y. Ito, J. Biomed. Mater. Res. 29, 893 (1995).
  • [10] M. J. Donachie, Titanium: A Technical Guide, ASM International, Metal Park, OH 1989.
  • [11] Lin Dj, Ju CP, Chern lin JH., Structure and properties of cast Ti-Fe alloys. AFS Trans. 216, 859 (1999).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2810dd33-3a6d-49bd-80db-c16f4d41f9c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.