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The article proposes a new analytical method for the calculation of plates with constant and variable rigidity 
parameters. This method renders it possible to decrease the weight of the plates working under hydrostatic 
pressure by using variable thicknesses. 

Firs, a short overview of existing calculation methods and their results are compared. It is shown that all 
existing methods depend on boundary conditions. Then is given the theory of the proposed calculation method is 
described and calculations for plates with constant and variable thickness worked under uniformly loaded forces 
and hydrostatic pressure are made. The results are compared to the FEM calculations and experimental results 
obtained by a tensile test machine and special equipment. Calculation results obtained by the proposed analytical 
method and FEM results are very close. Deviations are not more than 11%. Deviations between theoretical 
calculations and experimental results depend on loading type and design of the test specimens but maximum 
values are not more than 17%.  

The proposed calculation method does not depend on the boundary conditions and can be used for plate 
calculations. Especially for plates with difficult design and complex loading.  
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1. Introduction  
 
 Thin plates are initially flat structural members bounded by two parallel planes called faces and a 
cylindrical surface (round plates) or two pairs of parallel planes called edges or boundaries. The boundaries 
are usually perpendicular to the plane faces. The distance between the plane faces is called the thickness of 
the plate and it is small in comparison with other characteristic dimensions of the plates (length, width, 
diameter, etc.). Geometrically, plates are bounded either by straight or curved boundaries. The static or 
dynamic loads carried by plates are predominantly perpendicular to the plate faces [1]-[6]. 
 The theoretical tasks of the calculations of plate bending even for simple shape plates with constant 
thickness face some mathematical problems, which in most cases can be solved by approximation methods 
or by numerical methods. The mathematical problems are growing if the plate has variable rigidity. For those 
cases theoretical solutions are provided in general for round and rectangular plates with linear thickness 
changing [7]-[14]. 
 Real solutions of plate calculations can be provided only in some particular cases, mainly for plates 
with constant thickness, simple shape and with special boundary conditions [15]. Variational methods of 
calculations are one of the more efficient instruments for defining deflections of plates and other components 
in more difficult cases [16]-[19]. In this research work, we propose an analytical method for the calculation 
of stress and deformations in rectangular plates with discrete variable thickness. The method can be used for 
plates under uniformly distributed loads and for plates under hydrostatic pressure.   
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2. Overview and analysis of existing calculation methods  
 

 Basic calculation methods are described in many teaching books and monographs [16]-[18]. Main of 
them are: 

a) Navier’ method, 
b) Levy solution, 
c) collocation method, 
d) Kantorovits-Vlassov method, 
e) grid method, 
f) plate calculations by FEM. 

 
The last three methods will be briefly described in this paper and an analysis of calculation results will 

be made.    
 
2.1. Kantorovits-Vlassov method for a four side fixed plate 
 

 The Kantorovits-Vlassov [16]-[18] method is one of the approximation methods. The plate fixed on 
four sides with the relation b a 1 with a distributed load is shown in Fig.1. 

 

 
 

Fig.1. Plate fixed on four sides under an uniformly distributed load. 
    

The boundary conditions are 
 

     x a
w 0  ;          

2

2
x a

w
0

x 

 
   

.                                                              (2.1) 

 
The equation for deflection is defined by 
 

   ( )
22w Y y 1                                                                    (2.2) 

  
where x a  . 
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To satisfy the boundary conditions on the sides ax  , the differential equation of deflection can be 
presented as follows 

 

  2 2 q
w 0

D
    .                                                                                            (2.3) 

 
After all the calculations [21] we can be obtain 
 

  

,
. cos .

,
. sin .

2 4 4

2 4

2 075 y y
0 014ch 1 143

x x qaa aw 1 2
2 075 y y 1 Da a0 004sh 1 143

a a 24

     
            
 

.                          (2.4) 

 
The deviation is for the shearing forces up to 14% from the real magnitudes and for the vertical 

reactions up to 15%. The Kantorovits-Vlassov method can give deviation equal to zero for the calculation of 
deflection and for the calculation of the bending moment the deviation can be 0.5% [16]. Figure 2 shows the 
deviation between the Kantorovits-Vlassov method and the real values for uniformly distributed load 
(Fig.2a) and for the hydrostatic pressure (Fig.2b). 
  

 
 
Fig.2.  Deviation between the Kantorovits-Vlassov method and the real values for the uniform load 

distribution (a) and for the hydrostatic pressure (b). 
 
 As it can be seen in Fig.2, the Kantorovits-Vlassov method has a small deviation from the real values 
for the deflection W and for the bending moments M and can be used in plate calculations taking into account 
the deviation for shearing forces Q and vertical reactions V that can be up to 16.5%. The deviation for the 
hydrostatic pressure is on the same level as for the uniformly distributed load. 
  
2.2. Grid method for the plate calculation  
 
 Let us divide the plate into a mesh as shown in Fig.3 [16]; the step in the direction of the axis X is x, 
in the direction of axis Y it is y. Mesh points around the point CC are as shown in the figure. 
 The first derivative in the point CC can be defined by 
 

  bc dc

xcc

w ww

x 2

      
.       (2.5) 

  



838   G.Aryassov, D.Gornostajev and I.Penkov 

 The derivative with two variables is defined by 
 

  
2

2 2 2

2 2 24 2 2
cb cc cd

2 2 2 2
cc ycc

w w w
2

x x xw w

x y y x

       
                                           

. (2.6) 

 

                                   
Fig.3. Plate divided by a mesh. 

 
 After some calculations a harmonized equation can be obtained  
 

  
4 4 4

4 2 2 4

w w w q
2

Dx x y y

  
  

   
. (2.7) 

 
Under the consideration that 
 

  
2

y

x

 
   

. (2.8) 

 
 For a plate fixed in all four edges and with the boundary condition ccw 0  we can be obtain 
 

  bc dc

xcc

w ww
0

x 2

       
. (2.9) 

 
 After simplification and taking into account the boundary condition, for a free landed plate we can 
obtain 
 

  
2

2
bc cc dc

2
cc x

w 2w ww

x

   
    

. (2.10) 

 
 Figure 4 demonstrates the deviation between the results obtained by the grid method [22-28] and the 
real values for the uniformly distributed load (Fig.4a) and for hydrostatic pressure (Fig.4b). 
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 As can be seen from Fig.4, the grid method has a small deviation from the real values for the 
deflection W and can be used in the plate calculations taking into account the major deviation from the real 
values for the shearing forces Q and the vertical reactions V. 
 

 
 

Fig.4.  Deviation between the grid method and the real values for the uniform load distribution (a) and for 
the hydrostatic pressure (b). 

   
2.3. Plate calculations by FEM 
 
 Calculations for the plate can be provided by the integration of the biharmonic equation, which 
consists of the derivative of the plate deflection perpendicular to the plate plane. Under finite elements, 

deflection w can be defined by using an equation that has a matrix  N  and an angular displacement  e . 

Usually, it is used for rectangular and triangular elements in the plate calculations. In each node n the 
movement has three components such as the deflection that is perpendicular to the plate plane w in the 

direction of axis z, the rotation angle  x n
  around the axis x and the rotation angle  y n

 around the axis y. 

 There are twelve parameters for each element, so for the deflection w a polynomial can be written as 
follows 
 

  
.

2 2 3
1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

w x y x xy y x

x y xy y x y xy

        

    
 (2.11) 

 
Constants , ,...,1 2 12    can be defined from the equations system. 
 In the matrix it can be written as follows 
 

      e
C   ,       where            1 e

C
   . (2.12) 

 
 The deflections inside the elements can be defined by 
 

           1e e
w N P C

    . (2.13) 

 
 Figure 5 demonstrates the deviation between the results obtained by the FEM [29-40] and the real 
values for the uniformly distributed load (Fig.5a) and for hydrostatic pressure (Fig.5b). 
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 As shown by the figure, the FEM has a large deviation from the real values for the deflection W, 
bending moments M, shearing forces Q and vertical reactions V. Despite this and keeping in mind that other 
method are not suitable for comparing plate deflections, the FEM will be preferred. 
 

 
  
Fig.5.  Deviation between the FEM and the real values for the uniform load distribution (a) and for the 

hydrostatic pressure (b). 
   
2.4. Analysis of methods for plate calculation 
 
 In order to determine which of the methods is best for plate calculation and is closer to the real 
solution, a comparison of the deviations of all the methods is essential. The data of all the deviations for plates 
loaded by a distributed load are shown in Fig.6a, and for plates loaded by a hydrostatic pressure in Fig.6b. 
 

 
 
Fig.6.  Deviation between all the methods and the real values for the uniform load distribution (a) and for 

the hydrostatic pressure (b). 1 – Navier’ method, 2 – Levy solution, 3 – collocation method, 4 – 
Kantorovits-Vlassov method, 5 – grid method, 6 – plate calculations by FEM. 

 
 Figure 6 demonstrates that the collocation, the Kantorovits-Vlassov and the Navier’ methods have 
the smallest deviation from the real solution. The deviation for the deflection w is varies from 0.5% to 0.8%. 
Next in ranking are the grid and the Levy methods with deviations for the deflection 1.3% and 1.8%, 
respectively. The FEM method has the largest deviation, accounting for a deflection of 8.5%. In summary, 
all the methods except the FEM cannot be used for plate calculation loaded by the hydrostatic pressure 
taking account of the boundary conditions. If all the parameters will be taken into consideration, it can be 
concluded that the most suitable method for plate calculation loaded by the hydrostatic pressure is the FEM 
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method. Taking into consideration that the FEM method does not depend on the boundary conditions, it suits 
best for the comparison of the proposed results. 
 
3. Calculation of plates with variable thickness  
 
 To ensure a more optimal distribution of the stress, the plates can have variable thicknesses. These 
constructions are widely used in shipbuilding for most of the hull elements of the ships. In the plate 
calculations by variational methods it is necessary to determine the basic set functions for unknown 
variables, which satisfy the boundary conditions on the edge of the construction. The task is to develop the 
theory and methods for plates with variable thicknesses. For that purpose calculation algorithms are required, 
which can expand the area of plate calculation tasks improving the existing solutions. 
 In particular, the calculations are complex if the elements consist of variable thicknesses. The 
composite structures include beams, plates with stepwise changing stiffness as well as shells consisting of 
elements of various shapes. Composite structures are typically calculated by their decomposition into 
individual elements, where in each of them the stiffness and geometric characteristics change monotonously. 
For each obtained element, a solution must be known in advance. To ensure the neighboring conjugation 
sites on the displacements and the internal forces, a system of algebraic equations must be set up with 
unknowns. nN   is the order of the differential equation, and N is the number of elements.  
  
3.1. Calculation of plates with variable thicknesses by generalized functions 
 
 Taking into account the method of additional partial solutions for the properties of generalized 
functions, a method for calculation of rectangular plates with variable stiffness using generalized functions is 
developed. This method can be defined as a private case of a method of generalized solutions [41]. To solve 
this task taking into account some properties of generalized functions, it is necessary to develop a system of 
algebraic equations only with n unknown. 
 Figure 7 shows a rectangular plate with variable thicknesses, freely supported at two opposite edges 

,y 0 y b   and two fixed edges ,x 0 x a  . 
 

          
Fig.7.  Rectangular plate with variable thicknesses with two opposite edges freely supported and two fixed 

edges. 
 
 The differential equation for the deflection surface ( , )w x y  of the i section of the plate is described 
by the biharmonic equation 
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           , , , ,
,

4 4 4
2 2

4 2 2 4
i

w x y w x y w x y q x y
w x y 2

Dx x y y

  
     

   
 (3.1) 

 
where     , , ...i 1 2 N . 

 
 The solution is in the form 
 
   ( , ) ( )w x y Y y X x . (3.2) 

 
 Taking into consideration that stiffness is changing unevenly only in one direction along the y axis, 
the function  X x  can be defined as the polynomial below 

 

   
22

2

x
X x 1

a

 
   
 

, (3.3) 

 
and the deflection surface ( , )w x y  will be 
 

  ( , ) ( )

22

2

x
w x y Y y 1

a

 
   

 
. (3.4) 

 Equation (3.2) satisfies the boundary conditions  ,w x y 0  and 
 ,w x y

0
x





 at these two sides 

,x 0 x a  . The task is to determine ( )Y y  in a form that would satisfy the boundary conditions on the sides 

,y 0 y b   and the equation of the deflection surface. The principle of virtual displacements will be used  

 

       , ,

2a a 2
2 2 2 2

2
i i0 0

q q x
w x y X x dx w x y 1 dx 0

D D a

    
                     

  . (3.5) 

 
Let us place ( , )w x y  from Eq.(3.4) to Eq.(3.5). Then we will obtain 
 

  ''( ) ( ) ( )

2 2a 2 2 2
IV

4 2 2 2 2
i0

24 8 x x q x
Y y 1 3 Y y 1 Y y 1 dx 0

Da a a a a

                                
 . (3.6) 

 
After integration the results will be as follows 
 

  ''( ) ( ) ( )IV
2 4

i

8 16 24 q
Y y Y y Y y

21 D7a a
   . (3.7) 

 
 Since the structure consists of two sections (Fig.7), it is possible to consider the following auxiliary 
differential equation 
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   

           

''( ) ( ) ( )IV
02 4

i

1 2 3

8 16 24 q
Y y Y y Y y B d y d

21 D7a a

B d y d B d y d B d y d

      

          
 (3.8) 

 
where i = 1, 2. 
 At this point, it is necessary to find a special solution of the differential Eq.(3.8) in this form 
 

            ( )r 0 q qY y 1 y d Z y Z y y d V y             
 . (3.9) 

 
 Consistently differentiating the expression (3.9) four times and taking into account the filtering 
property of the delta function, the following will be obtained: 
 

  

               

       
               

( ) ,

( )

,

r 0 q q 0 q q

r 0 q q

0 q q 0 q q

Y y 1 y d Z y Z y V y y d Z y Z y V y

Y y 1 y d Z y Z y V y

2 y d Z y Z y V y y d Z y Z y V y

                     

              
                 



  

  

  
               

               

( )

,

r 0 q q 0 q q

0 q q 0 q q

Y y 1 y d Z y Z y V y 3 y d Z y y Z y V y

3 y d Z y Z y V y y d Z y Z y V y

                         
                  


 (3.10) 

   

  

         

               

               

IY IY IY IY
r 0 q q

0 q q 0 q q

0 q q 0 q q

Y y 1 y d Z y y Z y V x

4 y d Z y Z y V y 6 y d Z y Z y V y

4 y d Z y Z y V y y d Z y Z y V y

           
                    

                  



  

 

 By substituting the values  IY
rY y , ( )rY y  and ( )rY y  in Eq.(3.8), and by comparing the coefficients 

of the delta-function and its derivatives on the left and right sides of Eq.(3.8), the unknown coefficients 
B0(d), B1(d), B2(d), and B3(d) for this equation must satisfy the relations, where four integration constants Cj 
are included 
 

       0 3 3 y d2

12
B d B y B y

a


    
 

;           1 3 32
y d

6
B d 4B y B y

a 

   
 

; 

   (3.11) 

     2 3 y dB d 4B y  ;                                  
4

3 j q 0 j q y d
j 1

8
B d C V y Z y Z y

21 


     ,  

 

where jC  integration constants determined from the boundary conditions, and  0 jZ y  are particular 

linearly independent solutions of the homogeneous differential Eq.(3.7): 

From the homogeneous differential Eq.(3.7), the particular solutions  0 jZ y  will be 
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    . .
cos01

2 343y 1 575y
Z y ch

a a
 ;        . .

sin02
2 343y 1 575y

Z y ch
a a

 ; 

   (3.12) 

    . .
cos03

2 343y 1 575y
Z y sh

a a
 ;         . .

sin04
2 343y 1 575y

Z y sh
a a

 .  

 
Then the function 
 

               ( )
4

j 0 j q q
j 1

Y y C 1 y d Z x 1 y d Z x y d V x


               , (3.13) 

 
is the general solution of the differential Eq.(3.8). 
 It follows that the general solution of the initial differential Eq.(3.7) in the case of two sections is 
determined by the formula 
 
     ( ) rY y Y y Y y   , (3.14) 

 
where  rY y  is the special particular solution of the non-homogeneous differential Eq.(3.8) under the 

condition that the coefficients B0(d), B1(d), B2(d), and B3(d) satisfy the relations (3.11). 
 After completing the calculations, it is possible to obtain the main equation for the deflection by 
multiplying Eqs (3.4) and (3.24) 
 

      , ( )

22

r 2

x
w x y Y y Y y 1

a

 
    

 
 . (3.15) 

 
 By using this equation the numerical results of the deflection of the plate can be obtained. 
 
3.2. Particular solution in the case of a uniformly distributed load 
 
 A particular solution  rY y  can be found by the method of variation of arbitrary constants. In this 

case we can obtain 
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(3.16) 
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where      , ,01 02 03Z y Z y Z y  and  04Z y  are the particular solutions of the homogeneous differential 

Eq.(3.7), which are determined by the expressions (3.8) and the coefficients      , ,0 1 2B d B d B d  and 

 3B d , that are 
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 Thus, the general solution of the non-homogeneous differential Eq.(3.1) can be found by the 
following formula, taking into account Eqs (3.13), (3.14) and (3.15) 
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 If the construction contains several sections with different stiffness characteristics, the general 
solution can be written as follows 
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 (3.19) 

 

where    0y d 1   ,        l 1y d 0   . 

  

 l 1d    , ,...,l 1 2   are the coordinates of the points in which the stiffness characteristics of the 

construction are changed. 
 The particular solution  rY y , which is included in Eq.(3.19), takes the form 
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 where  rlY y  is the partial solution, which can be calculated by Eq.(3.16) with the replacement d  

for ld . Equation (3.19) shows that the unknown included in this formula are arbitrary constants 1C , 2C , 3C  

and 4C  which can be calculated from the boundary conditions of the problem. 
 
3.3. Particular solution in the case of hydrostatic pressure 
  

 Similarly, the particular solution  yYr

~
 for the hydrostatic pressure can be found. In this case the 

differential Eq.(3.8) will be 
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 Similarly to the case of the uniformly distributed load, the particular solution  yYr
~

 for the 
hydrostatic pressure can be found by the method of variation of arbitrary constants. In this case it will be 
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where      , ,01 02 03Z y Z y Z y  and  04Z y  are the particular solutions of the homogeneous differential 

Eq.(3.7), which are determined by Eq.(3.12) and the coefficients      , ,0 1 2B d B d B d  and  3B d  are 
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 Thus, the general solution of the non-homogeneous differential Eq.(3.1) for the hydrostatic pressure, 
taking into account Eqs (3.13), (3.14) and (3.22), can be found by the next formula 
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 The obtained results can be generalized to any type of a composite construction of beams and plates. 
The number of arbitrary constants of integration will be equal to the order of the differential equations 
corresponding to the considered type of constructions. These constants are determined from the appropriate 
boundary conditions of the problem. 
 
3.4. Results of calculations 
  
 In order to solve the equations and to obtain the numerical results of deflection the Matlab program 
is used. The results are presented by the values of deflection for all the cases of the calculation (Tab.1):   

1) plate with constant thickness (h = 8 mm) loaded by the uniformly distributed load, 
2)  plate with constant thickness (h = 8 mm) loaded by the hydrostatic pressure, 
3) plate with variable thicknesses (h1 = 6 mm, h2 = 8 mm, Fig.7) loaded by the uniformly distributed 

load, 
4)  plate with variable thicknesses (h1 = 6 mm, h2 = 8 mm, Fig.7) loaded by the hydrostatic pressure. 

  
Table 1. Maximum deflections of the plates. 
 

Load, kPa 6 12 18 24 
Case of calculation     

1 0.110 0.240 0.370 0.490 
2 0.022 0.049 0.072 0.099 
3 0.160 0.320 0.510 0.690 
4 0.031 0.062 0.093 0.133 

 
 The total loads are equal to 6 kPa, 12 kPa, 18 kPa and 24 kPa for the uniformly distributed load. The 
same loads are used for the calculations under hydrostatic pressure. The calculations were made for plates 
with constant (8 mm) and variable (6 mm and 8 mm) thickness with dimensions of 180 mm in width and 400 
mm in length loaded by the uniformly distributed load and hydrostatic pressure. The steel grade NVA with 
yield stress 235 N/mm2 is used. 
 Deflections along all widths of the plate are presented in Fig.8 for all four cases of loading. The 
figure and Tab.1 show that deflection of the plates with variable thickness is 40% and 34% more in 
comparison to the deflection of the plates with constant thickness for uniform load distribution and 
hydrostatic pressure accordingly.  
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Fig.8. Curve of the plates deflection. 

 

4. Experiments and FEM analysis  
 

 In order to check and prove that this method of plate calculation is correct and can be used, a series 
of experiments were made with the use of a tensile test machine with additional equipment. The basis of test 
components are shown in Fig.9. FEM calculations were also made.  
 

 
 

Fig.9.  Tensile test machine with equipment. 1 – jig, 2 – plate with h1 = 6 mm, 3 – rubber pie, 4 – plate with 
h2 = 8 mm, 5 – freely-supported end, 6 – deflection indicator, 7 – U-channel. 
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 The experiments were carried out for two types of plates: a plate with variable thicknesses of 6 mm 
and 8 mm, and a plate with a constant thickness of 8 mm. The steel grade NVA with yield stress 235 N/mm2 
was used. The aim was to achieve the deflection magnitudes of the plate under a uniformly distributed load. 
The main challenge was to convert a single force to a distributed load. For this reason a special jig was 
designed and produced. Another aim was to imitate a distributed load on the whole surface of the plate. 
Therefore, a rubber pie was produced and connected to the jig. A medium soft rubber was used, which seems 
to suit perfectly for transferring a load on the whole surface of the plate. 
 The plate with variable thickness was fixed at two sides to the U-channel in order to imitate a 
real side of the plate. The U-channel with the plate was fixed to the table to avoid any movements 
during the pressure work. The deflection was measured by the clock indicator with an accuracy of +/-
0.01 mm. 
  
Table 2. Deflection (mm) of the plate with constant thickness under an uniformly distributed load. 
 

8 mm plate with constant thickness 

Attempt Load 6 kPa Load 12 kPa Load 18 kPa Load 24 kPa 

1 0.12 0.26 0.37 0.47 

2 0.14 0.27 0.37 0.48 

3 0.14 0.27 0.38 0.46 
 
 In these experiments, three attempts of each load were made with twelve measurements of the 
deflection in order to achieve more accurate results. In the first experiment, a plate with a constant 
thickness of 8 mm was used. The dimensions of the plate were 180 mm in width and 400 mm in length. 
The plate was fixed at two sides and two sides were freely supported. The dimensions of the plate were 
chosen due to the limited area of the stand of the setup. The results of the experiments are presented in the 
Tab.2 and Tab.3. 

Table 3. Deflection (mm) of the plate with variable thicknesses under an uniformly distributed load. 

6-8 mm plate with variable thicknesses 

Attempt Load 6 kPa Load 12 kPa Load 18 kPa Load 24 kPa 

1 0.15 0.29 0.44 0.59 

2 0.15 0.30 0.44 0.58 

3 0.16 0.29 0.43 0.57 
 
 FEM calculations were done by help of the Solid Works Cosmos program. In the calculation the 
same data were used as in the experiment and in the method of analytical calculations. Two calculations for 
the plate with variable thicknesses of 6 and 8 mm and for the plate with a constant thickness of 8 mm were 
made. 
 The results from all the calculations have to be compared. Figure 10 shows the deflections of the 
plate for all four considered cases.  
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Fig.10. Comparison of obtained results. 1 – plate with constant thickness and uniformly distributed load, 2 – 

plate with variable thickness and uniformly distributed load, 3 – plate with constant thickness and 
hydrostatic pressure, 4 – plate with variable thickness and hydrostatic pressure. 

 
 Figure 10 shows that values calculated by proposed method are very close to the results obtained by 
FEM. Maximum deviation is about 11%. Maximum deviation between experimental results and FEM 
calculation is 17%. All this means that proposed method can be used for calculation of plates with variable 
thickness under uniformly loading or hydrostatic pressure.  
 
5. Conclusions  
 
 An improved method for calculation of plates with variable thicknesses is proposed. This method is 
independent of the boundary conditions, which makes it different from other methods. A substantial 
advantage of the method of generalized function is that it can be compared to other methods used to solve the 
tasks of the theory of plates. 
 The achieved results show that the calculations with the new method are correct and they can be used 
for plates with variable thicknesses. By using Matlab software, the deflections of plates were found. The 
results of the proposed method are close to those of the FEM. The deviation is in the range of 0 to 11% 
compared with FEM calculations. 
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 The experiments with two type of plates were made. First, with an 8 mm plate of constant thickness 
and then, a 6 mm and 8 mm plate with variable thicknesses. The experimental results are close to the results 
of the proposed method. The maximum deviation is in the range of 0 to 17 %. 
 The proposed method make it possible to decrease the weight of the plates working under hydrostatic 
pressure by using variable thicknesses. The method can be used as a basis for the development of an 
algorithm for program calculations of plate thickness. 
 
Acknowledgements 
 

This research work was supported by innovative Manufacturing Engineering Systems Competence 
Centre IMECC (supported by Enterprise Estonia and co-financed by the European Union Regional 
Development Fund, project EU48685); Estonian Research Council grant PUT1300; the Estonian Centre of 
Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts, ZEBE, grant TK146 
funded by the European Regional Development Fund. 
 
Nomenclature 
   
 a  plate width 

   
   

, ,

,    

0 1

2 3

B d B d

B d B d
  unknown coefficients 

 b  plate height 
 D  flexural rigidity of the plate 
 d  coordinate of the point at which stiffening behavior changes abruptly or design changes rigidity 
 q(x, y)  intensity of a continuously distributed load 
 w(x, y)   plate deflection 
 X(x)  function of the coordinate x 
 x, y  rectangular coordinate 
 Y(y)  function of the coordinate y 
  0Z y   general solution of the corresponding homogeneous differential equation 

    yVyZ qq ,   partial solutions for the first and second sections corresponding to the action on the structure of the 

normal pressure q  

  (y – d)  delta-function 
  y d    unit function 

   del operator 
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