PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optical trapping forces of focused circular partially coherent beams on Rayleigh particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optical trapping forces of tightly-focused radially polarized circular partially coherent beams on Rayleigh particles are theoretically investigated. Numerical calculations are performed to study the optical trapping forces on Rayleigh particles for different initial coherent length of the incident circular partially coherent beams. The results show that the magnitude of the gradient force decreases with the reduction of the initial coherent length of the focused radially polarized circular partially coherent beams, while the balanced position (i.e., the position where the optical trapping forces becomes zero) stays constant. Moreover, the focused spot gradually elongates along the optical axis with the reduction of the initial coherent length, and the axial gradient force on Rayleigh particles also decreases gradually with the reduction of the intensity gradient in axial direction. As there exists an spherical aberrant in the focusing optical system, the focal spot in the direction of the optical axis becomes trumpet-shaped, and the optical trapping forces on Rayleigh particles change as well.
Czasopismo
Rocznik
Strony
575--583
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
autor
  • Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science & Engineering, Huaqiao University, Xiamen 361021, China
autor
  • College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
  • Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science & Engineering, Huaqiao University, Xiamen 361021, China
Bibliografia
  • [1] HU K., CHEN Z., PU J., Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface, Optics Letters 37(16), 2012, pp. 3303–3305, DOI: 10.1364/OL.37.003303.
  • [2] LIU T., TAN J., LIU J., LIN J., Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel, Journal of Modern Optics 60(5), 2013, pp. 378–381, DOI: 10.1080/09500340.2013.778343.
  • [3] SUNDARAM C.M., PRABAKARAN K., ANBARASAN P.M., RAJESH K.B., MUSTHAFA A.M., Creation of super long transversely polarized optical needle using azimuthally polarized multi Gaussian beam, Chinese Physics Letters 33(6), 2016, article no. 064203, DOI: 10.1088/0256-307X/33/6/064203.
  • [4] ZHAN Q., Cylindrical vector beams: from mathematical concepts to applications, Advances in Optics and Photonics 1(1), 2009, pp. 1–57, DOI: 10.1364/AOP.1.000001.
  • [5] PING C., LIANG C., WANG F., CAI Y., Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties, Optics Express 25(26), 2017, pp. 32475–32490, DOI: 10.1364/OE.25.032475.
  • [6] PAYEUR S., FOURMAUX S., SCHMIDT B.E., MACLEAN J.P., TCHERVENKOV C., LÉGARÉ F., PICHÉ M., KIEFFER J.C., Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse, Applied Physics Letters 101(4), 2012, article no. 041105, DOI: 10.1063/1.4738998.
  • [7] PRABAKARAN K., SANGEETHA P., KARTHIK V., RAJESH K.B., MUSTHAFA A.M., Tight focusing properties of phase modulated radially polarized Laguerre Bessel Gaussian beam, Chinese Physics Letters 34(5), 2017, article no. 054203, DOI: 10.1088/0256-307X/34/5/054203.
  • [8] ARBABI A., HORIE Y., BAGHERI M., FARAON A., Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nature Nanotechnology 10, 2015, pp. 937–943, DOI: 10.1038/nnano.2015.186.
  • [9] PFEIFFER C., GRBIC A., Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets, Physical Review Letters 110(19), 2013, article 197401, DOI: 10.1103/PhysRevLett.110.197401.
  • [10] WANG J., Advances in communications using optical vortices, Photonics Research 4(5), 2016, pp. B14–B28, DOI: 10.1364/PRJ.4.000B14.
  • [11] CHEN Z., HUA L., PU J., Chapter 4 - Tight focusing of light beams: effect of polarization, phase, and coherence, Progress in Optics 57, 2012, pp. 219–260, DOI: 10.1016/B978-0-44-459422-8.00004-7.
  • [12] WOLF E., JAMES D.F.V., Correlation-induced spectral changes, Reports on Progress in Physics 59(6), 1996, pp. 771–818, DOI: 10.1088/0034-4885/59/6/002.
  • [13] SETÄLÄ T., LINDFORS K., FRIBERG A.T., Degree of polarization in 3D optical fields generated from a partially polarized plane wave, Optics Letters 34(21), 2009, pp. 3394–3396, DOI: 10.1364/OL.34.003394.
  • [14] ZHU S., WANG J., LIU X., CAI Y., LI Z., Generation of arbitrary radially polarized array beams by manipulating correlation structure, Applied Physics Letters 109(16), 2016, article no. 161904, DOI: 10.1063/1.4965705.
  • [15] WANG J., HUANG H., CHEN Y., WANG H., ZHU S., LI Z., CAI Y., Twisted partially coherent array sources and their transmission in anisotropic turbulence, Optics Express 26(20), 2018, pp. 25974–25988, DOI: 10.1364/OE.26.025974.
  • [16] KOROTKOVA O., Random sources for rectangular far fields, Optics Letters 39(1), 2014, pp. 64–67, DOI: 10.1364/OL.39.000064.
  • [17] MA L., PONOMARENKO S.A., Optical coherence gratings and lattices, Optics Letters 39(23), 2014, pp. 6656–6659, DOI: 10.1364/OL.39.006656.
  • [18] WAN L., ZHAO D., Optical coherence grids and their propagation characteristics, Optics Express 26(2), 2018, pp. 2168–2180, DOI: 10.1364/OE.26.002168.
  • [19] SANTARSIERO M., MARTÍNEZ-HERRERO R., MALUENDA D., DE SANDE J.C.G., PIQUERO G., GORI F., Partially coherent sources with circular coherence, Optics Letters 42(8), 2017, pp. 1512–1515, DOI: 10.1364/OL.42.001512.
  • [20] SANTARSIERO M., MARTÍNEZ-HERRERO R., MALUENDA D., DE SANDE J.C.G., PIQUERO G., GORI F., Synthesis of circularly coherent sources, Optics Letters 42(20), 2017, pp. 4115–4118, DOI: 10.1364/OL.42.004115.
  • [21] DING C., KOIVUROVA M., TURUNEN J., PAN L., Self-focusing of a partially coherent beam with circular coherence, Journal of the Optical Society of America A 34(8), 2017, pp. 1441–1447, DOI: 10.1364/JOSAA.34.001441.
  • [22] LIN H., ZHOU X., CHEN Z., SASAKI O., LI Y., PU J., Tight focusing properties of a circular partially coherent Gaussian beam, Journal of the Optical Society of America A 35(12), 2018, pp. 1974–1980, DOI: 10.1364/JOSAA.35.001974.
  • [23] LIN H., LI Y., ZHOU X., WANG J., CHEN Z., PU J., Generation of optical needle and dark channel by tight focusing of radially polarized circular partially coherent beams, Optica Applicata 50(2), 2020, pp. 229–240, DOI: 10.37190/oa200206.
  • [24] RICHARDS B., WOLF E., Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 253(1274), 1959, pp. 358–379.
  • [25] LINDFORS K., SETÄLÄ T., KAIVOLA M., FRIBERG A.T., Degree of polarization in tightly focused optical fields, Journal of the Optical Society of America A 22(3), 2005, pp. 561–568, DOI: 10.1364/JOSAA.22.000561.
  • [26] LI D, WANG X, PU J., The effect of astigmatism of focusing lens on potical trapping force, Optical Technique 38, 2012, pp. 268–272.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-280ed4d6-e74c-42d3-a3d6-e5e5180d8227
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.