PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs) by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide), type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl. The morphologies of the CNTs–polymer composite fibres were studied by scanning electron microscopy. Thermal behaviours and mechanical properties of the CNTs–polymer composite fibres were investigated using differential scanning calorimetry and tearing tester, respectively. The results reveal that using CNTs had tangible effect on electrical, thermal and mechanical properties of the melt spun fibres. Also, polyamide had a better dispersion of CNTs and correspondingly lower surface resistivity.
Rocznik
Strony
87--92
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
autor
  • Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Hu L., Pasta M., Mantia F.L., Cui L., Jeong S., Deshazer H.D., Choi J.W., Han S.M. and Cui Y., 2010, Stretchable, porous, and conductive energy textiles, Nano letters, vol. 10(2), pp. 708–714.
  • [2] Mai, H.J., Roth S., 1986, Elektrisch leitende kunstsoffe, Hanser Verlag: München Wien.
  • [3] Soroudi A. and Skrifvars M., 2010, Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres, Synthetic Metals, vol. 160, pp. 1143–1147.
  • [4] Pomfret S.J., Adams P.N., Comfort N.P. and Monkman A.P., 1999, Advances in processing routes for conductive polyaniline fibres, Synthetic metals, vol. 101(1), pp. 724–725.
  • [5] Mirjalili M., Nateghi M.R., Mortezazadeh S. and Karimi L., 2013, Preparation of pyrrole-thiophene conductive polymeric composite on cotton fabric, Asian Journal of Chemistry, vol. 25 (12), pp. 6673–6678.
  • [6] Karimi L., Yazdanshenas M. E., Khajavi R., Rashidi A., and Mirjalili M., 2014, Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity, Cellulose, vol. 21 (5), pp. 3813–3827.
  • [7] Huang J., Zhang Q., Zhao M., and Wei, F., 2012, A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering, Chinese Science Bulletin, vol. 57(2-3), pp.157–166.
  • [8] Sun M., Feng J., Qiu H., Fan L., Li X., and Luo C., 2013, CNT–TiO2 coating bonded onto stainless steel wire as a novel solid-phase microextraction fiber, Talanta, vol. 114, pp. 60–65.
  • [9] Wei B. Q., Vajtai R., and Ajayan P. M., 2001, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol. 79(8), pp. 1172–1174.
  • [10] Dürkop T., Kim B. M., and Fuhrer M. S., 2004, Properties and applications of high-mobility semiconducting nanotubes, Journal of Physics: Condensed Matter, vol. 16(18), pp. 553–580.
  • [11] Singh B. P., Bharadwaj P., Choudhary V., and Mathur R. B., 2014, Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites, Applied Nanoscience, vol. 4(4), pp. 421–428.
  • [12] Amini A., Zohoori S., Mirjalili A., Karimi L., and Davodiroknabadi A., 2014, Improvement in physical properties of paper fabric using multi-wall carbon nanotubes, Journal of Nanostructure in Chemistry, vol. 4(2), pp. 1–5.
  • [13] Pilehrood M. K., Heikkilä P., and Harlin A., 2012, Preparation of carbon nanotube embedded in polyacrylonitrile (pan) nanofibre composites by electrospinning process, AUTEX Research Journal, vol. 12(1), pp. 1–6.
  • [14] Mezghani K., Farooqui M., Furquan S., and Atieh M., 2011, Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers, Materials Letters, vol. 65(23), pp. 3633–3635.
  • [15] Kearns J.C. and Shambaugh R.L., 2002, Polypropylene fibers reinforced with carbon nanotubes, Journal of Applied Polymer Science, vol. 86(8), pp. 2079–2084.
  • [16] Haggenmueller R., Gommans H.H., Rinzler A.G., Fisher J.E. and Winey K.I., Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett., vol. 330(1–2), pp. 21–225.
  • [17] Potschke P., Bruning H., Janke A., Fischer D. and Jehnichen D., 2005, Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning, Polymer, vol. 46(23), pp. 10355–10363.
  • [18] Sennett M., Welsh E., Wright J.B., Li W.Z., Wen J.G. and Ren Z.F., 2003, Dispersion and alignment of carbon nanotubes in polycarbonate, Appl. Phys. A: Mater. Sci. Proc., vol. 76(1), pp. 111–113.
  • [19] Fornes T.D., Baur J.W., Sabba Y. and Thomas E.L., 2006, Morphology and properties of meltspun polycarbonate fibers containing single- and multi-wall carbon nanotubes, Polymer, vol. 47(5), pp.1704–1714.
  • [20] Siochi E.J., Working D.C, Park C., Lillehei P.T., Rouse J.H., Topping C.C., Bhattacharyya A.R. and Kumar S., 2004, Melt processing of SWCNT-polyimide nanocomposite fibers, Compos. Part B: Eng., vol. 35(5), pp.439–446.
  • [21] Sandler J.K.W., Pegel S., Cadek M., Gojy F., Van Es M., Lohmar J., Blau W.J., Schulte K., Windle A.H. and Shaffer M.S.P., 2004, A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres, Polymer, vol. 45(6), pp. 2001–2015.
  • [22] Li Z., Luo G., Wei F., Hunag Y., 2006, Microstructure of carbon nanotubes/PET conductive composites fibers and their properties, Compos. Sci. Technol., vol. 66(7–8), pp. 1022–1029.
  • [23] Chen W., Tai X. and Liu Y., 2006, Carbon nanotube-reinforced polyurethane composite fibers, Compos. Sci. Technol., vol. 66(15), pp. 3029–3034.
  • [24] Meng Q. and Hu J., 2008, Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning, Compos. Part A: Appl. Sci. Manuf, vol. 39(2), pp.314–321.
  • [25] Morton W.E., Hearl J.W.S., 1975, Physical Properties of Textile Fibers. 2th Ed., The Textile Institute, Manchester.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-280e9388-6bcd-4071-b29d-aadf75677b30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.