PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An environment model in multi-agent reinforcement learning with decentralized training

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (19 ; 08-11.09.2024 ; Belgrade, Serbia)
Języki publikacji
EN
Abstrakty
EN
In multi-agent reinforcement learning scenarios, independent learning, where agents learn independently based on their observations, is often preferred for its scalability and simplicity compared to centralized training. However, it faces significant challenges due to the non-stationary nature of the environment from each agent's perspective.
Rocznik
Tom
Strony
661--666
Opis fizyczny
Bibliogr. 14 poz., rys., wykr., wz.
Twórcy
  • Maria Curie-Sklodowska University in Lublin, 5 M. Curie-Skłodowskiej Square, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University in Lublin, 5 M. Curie-Skłodowskiej Square, 20-031 Lublin, Poland
Bibliografia
  • 1. S. V. Albrecht, F. Christianos, and L. Schäfer, Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. MIT Press, 2024. [Online]. Available: https://www.marl-book.com
  • 2. L. S. Shapley, “Stochastic games*,” Proceedings of the National Academy of Sciences, vol. 39, no. 10, pp. 1095–1100, 1953. http://dx.doi.org/10.1073/pnas.39.10.1095. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.39.10.1095
  • 3. R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” CoRR, vol. abs/1706.02275, 2017. http://dx.doi.org/10.48550/arXiv.1706.02275. [Online]. Available: http://arxiv.org/abs/1706.02275
  • 4. R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed., ser. Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press, 2018. ISBN 978-0-262-03924-6. [Online]. Available: http://incompleteideas.net/book/the-book.html
  • 5. T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “Model-based reinforcement learning: A survey,” 2022. http://dx.doi.org/10.48550/arXiv.2006.16712
  • 6. R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on approximating dynamic programming,” in Machine Learning Proceedings 1990, B. Porter and R. Mooney, Eds. San Francisco (CA): Morgan Kaufmann, 1990, pp. 216–224. ISBN 978-1-55860-141-3. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9781558601413500304
  • 7. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis, “Mastering chess and shogi by self-play with a general reinforcement learning algorithm,” CoRR, vol. abs/1712.01815, 2017. http://dx.doi.org/10.48550/arXiv.1712.01815. [Online]. Available: http://arxiv.org/abs/1712.01815
  • 8. M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller, “Embed to control: A locally linear latent dynamics model for control from raw images,” CoRR, vol. abs/1506.07365, 2015. [Online]. Available: http://arxiv.org/abs/1506.07365
  • 9. R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and reacting,” SIGART Bull., vol. 2, no. 4, p. 160–163, jul 1991. http://dx.doi.org/10.1145/122344.122377. [Online]. Available: https://doi.org/10.1145/122344.122377
  • 10. W. Zhang, X. Wang, J. Shen, and M. Zhou, “Model-based multi-agent policy optimization with adaptive opponent-wise rollouts,” 2022. http://dx.doi.org/10.48550/arXiv.2105.03363
  • 11. G. Tesauro, “Programming backgammon using self-teaching neural nets,” Artificial Intelligence, vol. 134, no. 1, pp. 181–199, 2002. http://dx.doi.org/10.1016/S0004-3702(01)00110-2. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370201001102
  • 12. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2019. http://dx.doi.org/10.48550/arXiv.1711.05101
  • 13. J. K. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. Santos, R. Perez, C. Horsch, C. Dieffendahl, N. L. Williams, Y. Lokesh, and P. Ravi, “Pettingzoo: Gym for multi-agent reinforcement learning,” 2021.
  • 14. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013. http://dx.doi.org/10.48550/arXiv.1312.5602
Uwagi
Thematic Sessions: Short Papers
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-280e901a-3b78-497a-adfd-bc0bb95ba37a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.