PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Shading of a Silvopastoral System on Microclimate and Botanical Composition of Polyphytic Pasture: A Preliminary Study in the Subtropics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The silvopasture system is an integrated system which has been widespread in tropical and sub-tropical climates. However, there is a lack of detailed studies regarding agroecological silvopasture systems. This study assessed whether the different levels of shading in an agroecological silvopastoral system influences the microclimate and botanical composition of polyphytic pasture. We used eight paddocks composed of a silvopastoral system in a subtropical climate, with different tree species arranged in simple lines with polyphytic pasture. In each paddock, we established three levels of visual shading (under the canopy, intermediate and full sun). The following microclimatic variables were recorded monthly during the daytime: illuminance, air temperature, air relative humidity, wind speed, and surface soil temperature. The samples of forages were separated into grasses, legumes and spontaneous, then fractionated into leaves, stems, and senescent material. We observed lower values of illuminance and surface soil temperature under the canopy, with differences between full sun and under the canopy at noon. Regarding the forage, the percentage of legumes was higher in full sun, and spontaneous species and leaves had high proportions under the canopy. Based on the results, the agroecological silvopastoral system changed the microclimatic characteristics and altered the plant composition of polyphytic pasture.
Rocznik
Strony
215--224
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Biometeorology Study Group [GEBIOMET], Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
  • Biometeorology Study Group [GEBIOMET], Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
  • Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
autor
  • Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland
  • Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
  • Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
  • Department of Statistics, Federal University of São Carlos, 13565-905 São Carlos, Brazil
autor
  • Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
  • Biometeorology Study Group [GEBIOMET], Universidade Tecnológica Federal do Paraná [UTFPR], Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos, Paraná, Brazil
  • Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, 31-120 Kraków, Poland
Bibliografia
  • 1. Altieri M.B. 2018. Agroecology: The science of sustainable agriculture. CRC Press: Boca Raton.
  • 2. Alvares C.A., Stape J.L., Sentelhas P.C., Gonçalves J.L.M., Sparovek G. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711–728.
  • 3. Andrade C.M.S., Valentin J.F., Carneiro J.C., Vaz F.A. 2004. Crescimento de gramíneas e leguminosas forrageiras tropicais sob sombreamento. Pesquisa Agropecuária Brasileira, 39, 263–270 (in Portuguese).
  • 4. Bayat L., Arab M., Aliniaeifard S., Seif M., Lastochkina O., Li T. 2018. Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10, ply052.
  • 5. Bosi C., Pezzopane J.R.M., Sentelhas P.C. 2020. Silvopastoral system with Eucalyptus as a strategy for mitigating the effects of climate change on Brazilian pasturelands. Anais da Academia Brasileira de Ciências, 92 (suppl.1), e20180425.
  • 6. Branco M.C.S., Almeida A.A.F., Dalmolin A.C., Ahnert D., Baligar V.C. 2017. Influence of low light intensity and soil flooding on cacao physiology. Scientia Horticulturae, 217, 243–257.
  • 7. Choi H.G., Moon B.Y., Kang N.J., Kwon J.K., Bekhzod K., Park S.P., Lee S.Y. 2014. Yield loss and quality degradation of strawberry fruits cultivated under the deficient insolation conditions by shading. Horticulture, Environment, and Biotechnology, 55, 263–270.
  • 8. Ehret M., Graß R., Wachendorf M. 2018. Productivity at the tree-crop interface of a young willow-grassland alley cropping system. Agroforestry Systems, 92, 71–83.
  • 9. Feldhake C.M. 2009. Forage evapotranspiration and photosynthetically active radiation interception in proximity to deciduous trees. Agricultural Water Management, 96, 1170–1174.
  • 10. Ferreira T.L.A. 2012. Bracatinga (Mimosa scabrella) como componente arbóreo em pastagem polifitica sob Pastoreio Racional Voisin. MSc. Dissertation, Universidade Federal de Santa Catarina, Florianópolis (in Portuguese).
  • 11. Gao L., Xu H., Bi H., Xi W., Bao B., Wang X., Bi C., Chang Y. 2013. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. PLoS One, 8, e70739.
  • 12. Jose S. & Dollinger J. 2019. Silvopasture: a sustainable livestock production system. Agroforestry Systems, 93, 1–9.
  • 13. Karki U. & Goodman M.S. 2010. Cattle distribution and behaviour in southern-pine silvopastoral versus open-pasture. Agroforestry Systems, 78, 159–168.
  • 14. Karvatte Jr.N., Miyagi E.S., Oliveira C.C., Mastelaro A.P., Coelho F.A., Bayma G., Bungenstab D.J., Alves F.V. 2021. Spatiotemporal variations on infrared temperature as a thermal comfort indicator for cattle under agroforestry systems. Journal of Thermal Biology, 97, 10287.
  • 15. Lee O.E. & Braun T.M. 2011. Permutation tests for random effects in linear mixed models. Biometrics, 68(2), 486–493.
  • 16. Lopes L.B., Eckstein C., Pina D.S., Carnevalli R.A. 2016. The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest. Tropical Animal Health and Production, 48, 755–761.
  • 17. Monteith J.L. & Unsworth M.H. 2013. Principles of Environmental Physics: Plants, Animals, and the Atmosphere. Academic Press: Oxford.
  • 18. Murgueitio E.R., Chará J.O., Barahona R.R., Cuartas C.C.; Naranjo, J.R. 2014. Los sistemas silvopastoriles intensivos (SSPI), herramienta de mitigación y adaptación al cambio climático. Tropical and Subtropical Agroecosystems, 17, 501–507 (in Spanish).
  • 19. Oliveira C.C., Almeida R.G., Karvatte Jr. N., Villela S.D.J., Bungenstab D.J., Alves F.V. 2021. Daytime ingestive behaviour of grazing heifers under tropical silvopastoral systems: Responses to shade and grazing management. Applied Animal Behaviour Science, 240, 105360.
  • 20. Peri P.L., Dube F., Varela A.C. 2016. Silvopastoral systems in the subtropical and temperate zones of South America: an overview. In Silvopastoral systems in Southern South America. In Peri P.L., Dube F., Varela A.C., Eds. Springer: Gainesville.
  • 21. Pilau J., Elli E.F., Nardino M., Korcelski C., Schmidt D., Caron B.O. 2015. Desenvolvimento e qualidade do azevém no sub-bosque de angico-vermelho em sistema silvipastoril. Comunicata Scientiae, 6, 437–444 (in Portuguese).
  • 22. Poppi D.P., Quigley S.P., Silva T.A.C.C., McLennan S.R. 2018. Challenges of beef cattle production from tropical pastures. Revista Brasileira de Zootecnia, 47, e20160419.
  • 23. R Development Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: URL http://www.R-project.org.
  • 24. Scafidi P., Pisciotta A., Patti D., Tamborra P., Lorenzo R.D., Barbagallo M.G. 2013. Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.). BMC Plant Biology, 13, 175.
  • 25. Verbeke G. & Molenberghs G. 2000. Linear mixed models for longitudinal data. Springer-Verlag, New York.
  • 26. Vieira F.M.C., Deniz M., Vismara E.S., Herbut P., Pilatti J.A., Sponchiado M.Z., Puretz B.O. 2020. Thermoregulatory and behaviour responses of dairy heifers raised on a silvopastoral system in a subtropical climate. Annals of Animal Science, 20, 613–627.
  • 27. Wall D.H. & Six J. 2015. Give soils their due. Science, 13(6223), 695.
  • 28. Wu Y., Gong W., Yang W. 2017. Shade Inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific Reports, 7, 9259.
  • 29. Wu Y., Qiu T., Shen Z., Wu Y., Lu D., He J. 2018. Effects of shading on leaf physiology and morphology in the ‘Yinhong’grape plants. Revista Brasileira de Fruticultura, 40, e-037.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-280d37ee-a5d7-484a-99f5-e33ab4fe3870
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.