PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The extention rank ordering criteria weighting methods in fuzzy enviroment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Weight elicitation is an important part of multi-criteria decision analysis. In real-life decisionmaking problems precise information is seldom available, and providing weights is often cognitively demanding as well as very time- and effort-consuming. The judgment of decision-makers (DMs) depends on their knowledge, skills, experience, personality, and available information. One of the weights determination approaches is ranking the criteria and converting the resulting ranking into numerical values. The best known and most widely used are rank sum, rank reciprocal and centroid weights techniques. The goal of this paper is to extend rank ordering criteria weighting methods for imprecise data, especially fuzzy data. Since human judgments, including preferences, are often vague and cannot be expressed by exact numerical values, the application of fuzzy concepts in elicitation weights is deemed relevant. The methods built on the ideas of rank order techniques take into account imprecise information about rank. The fuzzy rank sum, fuzzy rank reciprocal, and fuzzy centroid weights techniques are proposed. The weights obtained for each criterion are triangular fuzzy numbers. The proposed fuzzy rank ordering criteria weighting methods can be easily implemented into decision support systems. Numerical examples are provided to illustrate the practicality and validity of the proposed methods.
Rocznik
Strony
91--114
Opis fizyczny
Bibliogr. 78 poz., tab.
Twórcy
  • University of Bialystok, 15-063 Bialystok, ul. Warszawska 53, Poland
Bibliografia
  • [1] ALFARES H., DUFFUA S., Assigning Cardinal Weights in Multi-Criteria Decision Making Based on Ordinal Ranking, J. Multi-Crit. Dec. Anal., 2009, 15, 125–133.
  • [2] ALMEIDA A.T., ALMEIDA J.A., COSTA A.P.C.S., ALMEIDA-FILHO A., A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff, Eur. J. Oper. Res., 2016, 250, 179–191.
  • [3] AHN B.S., PARK K.S., Comparing methods for multiattribute decision making with ordinal weight, Comp. Oper. Res., 2008, 35 (5), 1660–1670.
  • [4] ATANASSOV K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 1986, 20, 87–96.
  • [5] BAO T., XIE X., LONG P., WEI Z., MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment, Exp. Syst. Appl., 2017, 88, 305–317.
  • [6] BARRON F.H., Selecting a best multiattribute alternative with partial information about attribute weights, Acta Psych., 1992, 80, 91–103.
  • [7] BARRON F.H., BARRETT B.E., The efficacy of SMARTER: simple multi-attribute rating technique extended to ranking, Acta Psych., 1996, 93 (1–3), 23–36.
  • [8] BARRON F., BARRETT B.E., Decision quality using ranked attribute weights, Manage. Sci., 1996, 42, 1515–1523.
  • [9] BELLMAN R.E., ZADEH L.A., Decision-making in a fuzzy environment, Manage. Sci., 1970, 17, 141–164.
  • [10] BELTON V., STEWART T.J., Multiple Criteria Decision Analysis: An Integrated Approach, Kluwer, Dordrecht 2002.
  • [11] BORCHERDING K., EPPEL T., VON WINTERFELDT D., Comparison of weighting judgments in multiattribute utility measurement, Manage. Sci., 1991, 37, 1603–1619.
  • [12] BOTTOMLEY P.A., DOYLE J.R., A comparison of three weight elicitation methods: Good, better, and best, Omega, 29, 2001, 553–560.
  • [13] BRUNELLI M., MEZEI J., How different are ranking methods for fuzzy numbers?, Int. J. Appr. Reas., 2013, 54, 627–639.
  • [14] BRZOSTOWSKI J., ROSZKOWSKA E., System supporting the decision criteria weights specification based on their probabilistic characteristic, Studia Ekon., 2014, 178, 58–72 (in Polish).
  • [15] CABRERIZO F., MORENTE-MOLINERA J.A., PEDRYCZ W., TAGHAVI A., HERRERA-VIEDMA E., Granulating linguistic information in decision making under consensus and consistency, Exp. Syst. Appl., 2018, 99, 83–92.
  • [16] CHANG P.T., LEE E.S., The estimation of normalized fuzzy weights, Comp. Math. Appl., 1995, 29 (5), 21–42.
  • [17] CHEN S.J., HWANG C.L., Fuzzy multiple attribute decision making, Lecture notes in economics and mathematical system series, Vol. 375, Springer-Verlag, New York 1992.
  • [18] CHURCHMAN C.W., ACKOFF R.L., An approximate measure of value, J. Oper. Res. Soc. Am., 1954, 2 (2), 107–226.
  • [19] CHOO E.U., SCHONER B., WEDLEY W.C., Interpretation of criteria weights in multicriteria decision making, Comp. Ind. Eng., 1999, 37, 527–541.
  • [20] CSUTOR A.R., BUCKLEY J., Fuzzy hierarchical analysis the Lambda–Max method, Fuzzy Sets Syst., 2001, 120, 181–195.
  • [21] DANIELSON M., EKENBERG L., Rank ordering methods for multi-criteria decisions, [In:] P. Zaraté, G.E. Kersten, J.E. Hernández (Eds.), Group Decision and Negotiation. A Process-Oriented View, Lecture Notes in Business Information Processing, Vol. 180, Springer, Cham 2014.
  • [22] DANIELSON M., EKENBERG L., A robustness study of state-of-the-art surrogate weights for MCDM, Group Decis. Negot., 2017, 26, 677–691.
  • [23] DUBOIS D., PRADE H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York 1980.
  • [24] DIAKOULAKI D., MAVROTAS G., PAPAYANNAKIS L., Determining objective weights in multiple criteria problems: The critic method, Comp. Oper. Res., 1995, 22, 763–770.
  • [25] DOYLE J.R., GREEN R.H., BOTTOMLEY P.A., Judging relative importance: Direct rating and point allocation are not equivalent, Org. Beh. Human Dec. Proc., 1997, 70, 55–72.
  • [26] EDWARDS W., How to use multiattribute utility analysis for social decision making, IEEE Trans. Syst. Man. Cybernet., 1977, SMC-7, 326–340.
  • [27] EDWARDS W., BARRON F.H., SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement, Org. Beh. Human Dec. Proc., 1994, 60, 306–325.
  • [28] FAN Z.P., MA J., ZHANG Q., An approach to multiple attribute decision making based on fuzzy preference information on alternatives, Fuzzy Sets Syst., 2002, 131, 101–106.
  • [29] GREEN P.E., SRINIVASAN V., Conjoint analysis in marketing: New developments with implications for research and practice, J. Market., 1990, 54, 3–19.
  • [30] HORSKY D., RAO M.R., Estimation of attribute weights from preference comparisons, Manage. Sci., 1984, 30, 801–822.
  • [31] HWANG C.L., YOON K.S., Multiple attribute decision making: Methods and applications, Springer- Verlag, Berlin 1981.
  • [32] DE-QING LI, JIA-YIN WANG, HONG-XING LI, Note on the normalization of interval and fuzzy weights, Fuzzy Sets Syst., 2009, 160, 2722–2725.
  • [33] JIA J., FISCHER G.W., DYER J.S., Attribute weighting methods and decision quality in the presence of sampling error: a simulation study, Journal of Behavioral Decision Making, 1998, 11 (2), 85–105.
  • [34] JIA J., Attribute Weighting Methods and Decision Quality in the Presence of Response Error: A Simulation Study, PhD Thesis, The University of Texas, Austin 1997.
  • [35] YAGER R.R., On a general class of fuzzy connectives, Fuzzy Sets Syst., 1980, 4 (3), 235–242.
  • [36] KAHRAMAN C., Fuzzy Multi-Criteria Decision Making. Theory and Application with Recent Development, Optimization and Its Applications, Vol. 16, Springer, New York 2008.
  • [37] KAUFMANN M., GUPTA M., Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand--Reinhold, New York 1991.
  • [38] KEENEY R.L., RAIFFA H., Decisions with multiple objectives: Preferences and value tradeoffs, Wiley, New York 1976.
  • [39] KIRKWOOD C.W., Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets, Duxbury Press, Belmont, CA, 1997.
  • [40] LAN J., LIN J., CAO L., An information mining method for deriving weights from an interval comparison matrix, Math. Comp. Model., 2009, 50, 393–400.
  • [41] MA J., FAN Z.P., HUANG L.H., A subjective and objective integrated approach to determine attribute weights, Eur. J. Oper. Res., 1999, 112, 397–404.
  • [42] MONTIBELLER G., VON WINTERFELDT D., Cognitive and motivational biases in decision and risk analysis, Risk Anal., 2015, 35 (7), 1230–1251.
  • [43] MORTON A., FASOLO B., Behavioural decision theory for multi-criteria decision analysis: A guided tour, J. Oper. Res., 2009, 60 (2), 268–275.
  • [44] NOH J., LEE M.L., Application of multiattribute decision-making methods for the determination of relative significance factor of impact categories, Environ. Manage., 2003, 31 (5), 633–641.
  • [45] OLSON D.L., DORAI V.K., Implementation of the centroid method on Solymosi and Dompi, Eur. J. Oper. Res., 1992, 60 (1), 117–129.
  • [46] PAVLACKA O., On various approaches to normalization of interval and fuzzy weights, Fuzzy Sets Syst., 2014, 243, 110–130.
  • [47] PAVLACKA O., Modeling uncertain variables of the weighted average operation by fuzzy vector, Inf. Sci., 2011, 181 (22), 4969–4992.
  • [48] RIABACKE M., DANIELSON M., EKENBERG L., State-of-the-Art Prescriptive Criteria Weight Elicitation. Advances in Decision Sciences, Hindawi Publishing Corporation, 2012, article ID 276584, p. 24, DOI: 10.1155/2012/276584.
  • [49] ROBERTS R., GOODWIN P., Weight approximations in multi-attribute decision models, J. Multi-Crit. Decis. Anal., 2002, 11, 291–303.
  • [50] ROSZKOWSKA E., Rank ordering criteria weighting methods: A comparative overview, Optimum. Studia Ekon., 2013, 5 (65), 14–33.
  • [51] ROSZKOWSKA E., KACPRZAK D., The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers, Inf. Sci., 2016, 369, 564–584.
  • [52] SAATY T.L., The Analytical Hierarchy Process, McGraw-Hill, New York 1980.
  • [53] SAATY T., VARGAS L., Uncertainty and rank order in the analytic hierarchy process, Eur. J. Oper. Res., 1987, 32, 107–117.
  • [54] SEVASTJANOV P., DYMOVA L., BARTOSIEWICZ P., A new approach to normalization of interval and fuzzy weights, Fuzzy Sets Syst., 2012, 198, 34–45.
  • [55] SIELSKA A., The impact of weights on the quality of agricultural producers’ multicriteria decision models, Oper. Res. Dec., 2015, 4, 51–68.
  • [56] SOLYMOSI T., DOMBI J., A method for determining the weights of criteria: The centralized weights, Eur. J. Oper. Res., 1985, 26, 35–41.
  • [57] SRIVASTAVA J., CONNOLY T., BEACH L.R., Do ranks suffice? A comparison of alternative weighting approaches in value elicitation, Org. Beh. Human Dec. Proc., 1995, 63 (1), 112–116.
  • [58] STILLWELL W.G., SEAVER D.A., EDWARDS W., A comparison of weight approximation techniques in multiattribute utility decision making, Org. Beh. Human Perf., 1981, 28, 62–77.
  • [59] TAKEDA E., COGGER K.O., YU P.L., Estimating criterion weights using eigenvectors: A comparative study, Eur. J. Oper. Res., 1987, 29, 360–369.
  • [60] TRIANTAPHYLLOU E., Multi-criteria decision-making methods: A comparative study, Kluwer Academic Publishers, London 2000.
  • [61] TZENG G.-H., CHEN T.-Y., WANG J.C., A weight assessing method with habitual domains, Eur. J. Oper. Res., 1998, 110 (2), 342–367.
  • [62] XU X., A note on the subjective and objective integrated approach to determine attribute weights, Eur. J. Oper. Res., 2004, 156, 530–532.
  • [63] XU Z.S., Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control Dec., 2007, 22 (2), 215–219.
  • [64] VAN LAARHOVEN P., PEDRYCZ W., A fuzzy extension of Saaty’s priority theory, Fuzzy Sets Syst., 1983, 11, 229–241.
  • [65] WANG H.F., Fuzzy multi-criteria decision making-an overview, J. Intel. Fuzzy Syst., 2000, 9, 61–83.
  • [66] WANG Y.M., PARKAN C., A general multiple attribute decision-making approach for integrating subjective preferences and objective information, Fuzzy Sets Syst., 2006, 157, 1333–1345.
  • [67] WANG Y.-M., ELHAG T.M.S., On the normalization of interval and fuzzy weights, Fuzzy Sets Syst., 2006, 157, 2456–2471.
  • [68] WANG Y., ELHAG T., A goal programming method for obtaining interval weights from an interval comparison matrix, Eur. J. Oper. Res., 2007, 177, 458–471.
  • [69] WANG T.-C., LEE H.-D., Developing a fuzzy TOPSIS approach based on subjective weights and objective weights, Exp. Syst. Appl., 2009, 36 (5), 8980–8985.
  • [70] WANG J.Q., NIE R.R., ZHANG H.Y., CHEN X.H., Intuitionistic fuzzy multi-criteria decision-making method based on evidential reasoning, Appl. Soft Comp., 2013, 13, 1823–1831.
  • [71] WANG Y., PARKAN C., LUO Y., A linear programming method for generating the most favorable weights from a pairwise comparison matrix, Comp. Oper. Res., 2008, 35, 3918–3930.
  • [72] WANG J.Q., ZHANG H.Y., Multicriteria decision-making approach based on Atanassov’s intuitionistic fuzzy sets with incomplete certain information on weights, IEEE Trans. Fuzzy Syst., 2013, 21, 510–515.
  • [73] WEBER M., BORCHERDING K., Behavioral influences on weight judgments in multiattribute decision making, Eur. J. Oper. Res., 1993, 67 (1), 1–12.
  • [74] WU Z., CHEN Y., The maximizing deviation method for group multiple attribute decision making under linguistic environment, Fuzzy Sets Syst., 2007, 158 (14), 1608–1617.
  • [75] WU J., SUN J., LIANG L., ZHA Y., Determination of weights for ultimate cross efficiency using Shannon entropy, Expert Syst. Appl., 38 (5), 2011, 5162–5165.
  • [76] ZIMMERMANN H.J., Fuzzy set theory and its application, 2nd Ed., Kluwer, Boston 1991.
  • [77] PIASECKI K., ROSZKOWSKA E., LYCZKOWSKA-HANCKOWIAK A., Simple additive weighting method equipped with fuzzy ranking of evaluated alternatives, Symmetry, 2019, 11 (4), 482.
  • [78] ROSZKOWSKA E., WACHOWICZ T., Application of fuzzy TOPSIS to scoring the negotiation offers in illstructured negotiation problems, Eur. J. Oper. Res., 2015, 242 (3), 920–932.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-280a5c3a-de56-492c-ae4c-5a572fa98205
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.