PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Cyclic Heat Treatment on Microstructure Evolution of TA15 Titanium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the effect of cyclic heat treatment on the microstructure evolution of titanium alloys, TA15 alloys were subjected to different numbers of heat treatment cycles at various temperatures in the (α + β) two-phase region. The resulting microstructure and hardness of the alloy were characterized by using the metallographic microscopy, scanning electron microscopy, and Vickers hardness testing. The morphology of the initial TA15 alloy was nearly equiaxed structure. The α phase content, thickness of the oxygen-rich α layer, and hardness of the TA15 alloy increased with the number of cycles. The morphology of the TA15 alloy changed into the Widmannstatten structure when the alloy underwent six cycles of heat treatment between 970 and 800°C. The thickness of the oxygen-rich α layer and hardness of the alloy increased with the lower limit temperature of the cyclic heat treatment. Compared with the number of cycles, the lower limit temperature of the cyclic heat treatment was a more significant factor on the microstructure evolution of the TA15 titanium alloy.
Twórcy
autor
  • Shenyang Aerospace University, Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang 110136, China
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
Bibliografia
  • [1] J. Yao, T. Suo, S. Zhang, F. Zhao, H. Wang, J. Liu, Influence of heat-treatment on the dynamic behavior of 3D laser deposited Ti-6Al-4V alloy. Mater. Sci. Eng. A 677, 153-162 (2016).
  • [2] X.Q. Jiang, X.G. Fan, M. Zhan, R. Wang, Y.F. Liang, Microstructure dependent strain localization during primary hot working of TA15 titanium alloy: Behavior and mechanism, Mater. Des. 203, 109589 (2021).
  • [3] Y. Li, P. Gao, J. Yu, S. Jin, S. Chen, M. Zhan, Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation, J. Mater. Sci. Technol. 98, 72-86 (2022).
  • [4] Q.J. Sun, X. Xie, Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing, Mat. Sci. Eng. A 724, 493-501 (2018).
  • [5] A. Arab, P. Chen, Y. Guo, Effects of microstructure on the dynamic properties of TA15 titanium alloy, Mech. Mater. 137, 103121 (2019).
  • [6] J. Zhao, L. Lv, G. Liu, K. Wang, Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model, Mat. Sci. Eng. A 707, 30-39 (2017).
  • [7] H.Z. Guo, Z.K. Yao, L. Fang, Z.W. Su, Z.X. Wang, Y.G. Guo, M.Y. Su, Effect of Deformation Heat-treatment on Microstructure and Properties of the Alloy Ti-1023, Rare Met. Mater. Eng. 29 (6), 408-410 (2000).
  • [8] R.N. Elshaer, M.I. Khaled, Effect of cold deformation and heat treatment on microstructure and mechanical properties of TC21 Ti alloy, T. Nonferr. Metal. Soc. 30, 1290-1299 (2020).
  • [9] Y. Zhao, H.Z. Guo, M.W. Fu, Y.Q. Ning, Z.K. Yao, Fabrication of bulk ultrafine grained titanium alloy via equal channel angular pressing based thermomechanical treatment, Mater. Des. 46, 889-894 (2013).
  • [10] K. Wang, M. Wu, Z. Yan, D. Li, R. Xin, Q. Liu, Microstructure evolution and static recrystallization during hot rolling and annealing of an equiaxed-structure TC21 titanium alloy, J. Alloy Compd. 752, 14-22 (2018).
  • [11] Z.B. Zhao, Q.J. Wang, J.R. Liu, R. Yang, Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60, Acta Mater. 131, 305-314 (2017).
  • [12] K. Mallikarjun, S. Suwas, S. Bhargava, Effect of prior β processing on superplasticity of (α+β) thermo-mechanically treated Ti-632Si alloy, J. Mater. Proc. Technol. 134, 35-44 (2003).
  • [13] A.P. Singh, F. Yang, R. Torrens, B. Gabbitas, Solution treatment of Ti-6Al-4V alloy produced by consolidating blended powder mixture using a powder compact extrusion route, Mat. Sci. Eng. A 712, 157-165 (2018).
  • [14] Y.C. Lin, Y. Tang, X.Y. Zhang, C. Chen, H. Yang, K.C. Zhou, Effects of solution temperature and cooling rate on microstructure and micro-hardness of a hot compressed Ti-6Al-4V alloy, Vacuum 159, 191-199 (2019).
  • [15] B. Tang, Y. Chu, M. Zhang, C. Meng, J. Fan, H. Kou, J. Li, The ω phase transformation during the low temperature aging and low rate heating process of metastable β titanium alloys, Mater. Chem. Phys. 239, 122125 (2020).
  • [16] C. Wu, M. Zhan, Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments, J. Alloy Compd. 805, 1144-1160 (2019).
  • [17] G. Fargas, J.J. Roa, B. Sefer, R. Pederson, M.-L. Antti, A. Mateo, Influence of cyclic thermal treatments on the oxidation behavior of Ti-6Al-2Sn-4Zr-2Mo alloy, Mater. Charact. 145, 218-224 (2018).
  • [18] H. Fang, R. Chen, G. Anton, J. Guo, H. Ding, Y. Su, H. Fu, Effect of cyclic heat treatment on microstructures and mechanical properties of directionally solidified Ti-46Al-6Nb alloy, Trans. Nonferrous Met. Soc. China 25, 1872-1880 (2015).
  • [19] R. Gaddam, B. Sefer, R. Pederson, M.-L. Antti, Oxidation and alpha-case formation in Ti-6Al-2Sn-4Zr-2Mo alloy, Mater. Charact. 99, 166-174 (2015).
  • [20] J.H. Chen, P.M. Rogers, J.A. Little, Oxidation behavior of several chromia-forming commercial nickel-base superalloys, Oxid. Met. 47, 381-410 (1997).
  • [21] Y. Zhang, D.A. Shores, Study of cracking and spalling of Cr2O3 scale formed on Ni-30Cr alloy, Oxid. Met. 40, 529-553 (1993).
  • [22] D. Poquillon, D. Monceau, Application of a simple statistical spalling model for the analysis of high-temperature, cyclicoxidation kinetics data, Oxid. Met. 59, 409-431 (2003).
Uwagi
This research was supported by the National Natural Science Foundation of China (No. 51701128), Liao Ning Revitalization Talents Program (No. XLYC2007075) and the Scientific Research Fund of Liaoning Provincial Education Department (No. JYT19037).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28075455-9679-4b51-a0c1-c8d15e11a145
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.