PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive review of polymer materials and selective laser sintering technology for 3D printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose This review analyses different approaches used to study selective laser sintering (SLS) technology of polymer materials. These main approaches concern: thermal behaviour, fatigue and surface roughness. Design/methodology/approach Regarding the first behaviour, researchers extensively studied the impact of process parameters, including scan speed, laser, power and laser energy density, on the thermal behaviour of 3D printed parts. Numerical and experimental analyses are used to conduct process parameter evaluations. Findings Laser power and scan speed are the most significant parameters of the laser energy density. For the second, according to test protocols and quantitative analysis performed, the authors concluded that the combination of small and large laser energy density particles generates higher sintering and better fatigue resistance. Moreover, tensile analysis in different environments showed that testing in the water decreased the fatigue life of polymer samples. The influence of process parameters on the mechanical properties and surface roughness of 3D parts is also analysed. In addition, the investigators found that the additives increase the surface roughness of 3D printed parts. Practical implications This review shows that researchers can focus on creating a combination of these approaches to expand the use of this process for industrial part production. Originality/value All these investigations have made it possible to determine the optimal process conditions to ensure higher quality, optimal surface quality and better fatigue strength.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
  • Laboratory of Innovative Technologies (LTI), Abdelmalek Essaadi University, ENSA, Road Ziaten Km 10, Tangier Principale, BP: 1818 - Tangier, Tangier 90060, Morocco
  • Laboratory of Mechanics, Production and Industrial Engineering (LMPGI), Hassan II University, EST, Road El Jadida Km 7, BP: 8012 - Oasis Casablanca, Casablanca, Morocco
autor
  • Systems Engineering and Innovation Laboratory, Mechanics and Systems Engineering Team, Moulay Ismail University, ENSAM, Marjane 2, B.P. 15290 - Al Mansor, Meknes 50000, Morocco
autor
  • Laboratory of Innovative Technologies (LTI), Abdelmalek Essaadi University, ENSA, Road Ziaten Km 10, Tangier Principale, BP: 1818 - Tangier, Tangier 90060, Morocco
Bibliografia
  • [1] P. Baras, J. Sawicki, Numerical analysis of mechanical properties of 3D printed aluminium components with variable core infill values, Journal of Achievements in Materials and Manufacturing Engineering 103/1 (2020) 16‑24. DOI: https://doi.org/10.5604/01.3001.0014.6912
  • [2] B.A. Praveena, N. Lokesh, A. Buradi, N. Santhosh, B.L. Praveena, R. Vignesh, A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential, Materials Today: Proceedings 52/3 (2022) 1309‑1313. DOI: https://doi.org/10.1016/j.matpr.2021.11.059
  • [3] N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers of Mechanical Engineering 8/3 (2013) 215‑243. DOI: https://doi.org/10.1007/s11465-013-0248-8
  • [4] S. Safaee, M. Schock, E.B. Joyee, Y. Pan, R.K. Chen, Field-assisted additive manufacturing of polymeric composites, Additive Manufacturing 51 (2022) 102642. DOI: https://doi.org/10.1016/j.addma.2022.102642
  • [5] B. Karaş, P.J. Smith, J.P.A. Fairclough, K. Mumtaz, Additive manufacturing of high density carbon fibre reinforced polymer composites, Additive Manufacturing 58 (2022) 103044. DOI: https://doi.org/10.1016/j.addma.2022.103044
  • [6] A. Nouri, A. Rohani Shirvan, Y. Li, C. Wen, Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review, Journal of Materials Science and Technology 94 (2021) 196‑215. DOI: https://doi.org/10.1016/j.jmst.2021.03.058
  • [7] A. Mokrane, Modélisation numérique du frittage laser des polymères en poudre, PhD thesis, INSA, Lyon, 2019 (in French). Available from: https://theses.hal.science/tel-03173067v1/file/these.pdf
  • [8] B. Bosserelle, T. Gauliard, J. Delode, Impression 3D : mise en place d’une plateforme collaborative de modèles 3D de pièces détachées et accessoires non critiques de dispositifs biomédicaux (AFIB3D), IRBM News 42/6 (2021) 100356 (in French). DOI: https://doi.org/10.1016/j.irbmnw.2021.100356
  • [9] J.P. Schultz, Modeling Heat Transfer and Densification during Laser Sintering of Viscoelastic Polymers, PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003, 24. Available from: https://vtechworks.lib.vt.edu/bitstream/handle/10919/11091/Schultz_Disertation.pdf?sequence=1&isAllowed=y
  • [10] M. Schmid, A. Amado, K. Wegener, Polymer powders for selective laser sintering (SLS), AIP Conference Proceedings 1664 (2015) 160009. DOI: https://doi.org/10.1063/1.4918516
  • [11] B. Van Hooreweder, D. Moens, R. Boonen, J.-P. Kruth, P. Sas, On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering, Polymer Testing 32/5 (2013) 972‑981. DOI: https://doi.org/10.1016/j.polymertesting.2013.04.014
  • [12] W. Zhu, C. Yan, Y. Shi, S. Wen, J. Liu, Y. Shi, Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts, Materials and Design 82 (2015) 37‑45. DOI: https://doi.org/10.1016/j.matdes.2015.05.043
  • [13] Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, M. Li, H. Zhang, Review on thermal analysis in laser-based additive manufacturing, Optics and Laser Technology 106 (2018) 427‑441. DOI: https://doi.org/10.1016/j.optlastec.2018.04.034
  • [14] F. Lupone, E. Padovano, F. Casamento, C. Badini, Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review, Materials 15/1 (2022) 183. DOI: https://doi.org/10.3390/ma15010183
  • [15] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Progress in Materials Science 74 (2015) 401‑477. DOI: https://doi.org/10.1016/j.pmatsci.2015.03.002
  • [16] J.A. Sauer, M. Hara, Effect of molecular variables on crazing and fatigue of polymers, in: H.-H. Kausch (ed), Crazing in Polymers Vol. 2. Advances in Polymer Science, vol 91/92, Springer, Berlin, Heidelberg, 1990, 69‑118. DOI: https://doi.org/10.1007/BFb0018019
  • [17] V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D.J. Johnson, R.E. Neisiany, M.S. Hedenqvist, S. Ramakrishna, F. Berto, Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials, International Journal of Fatigue 143 (2021) 106007. DOI: https://doi.org/10.1016/j.ijfatigue.2020.106007
  • [18] N. Hopkinson, R.J.M. Hague, P.M. Dickens (eds), Rapid manufacturing: an industrial revolution for the digital age, John Wiley, Chichester, England, 2006.
  • [19] J. Maisonneuve, C. Colin, Y. Bienvenu, P. Aubry, Etude des phénomènes thermiques associés à la fabrication directe de pièces en TA6V par projection laser, Proceedings of the Conference Materiaux 2006 Dijon, France, 2006 (in French).
  • [20] D. Grossin, A. Montón, P. Navarrete-Segado, E. Özmen, G. Urruth, F. Maury, D. Maury, C. Frances, M. Tourbin, P. Lenormand, G. Bertrand, A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering / melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites, Open Ceramics 5 (2021) 100073. DOI: https://doi.org/10.1016/j.oceram.2021.100073
  • [21] M.M. Lexow, M. Drexler, D. Drummer, Fundamental investigation of part properties at accelerated beam speeds in the selective laser sintering process, Rapid Prototyping Journal 23/6 (2017) 1099‑1106. DOI: https://doi.org/10.1108/RPJ-04-2016-0060
  • [22] P. Peyre, Y. Rouchausse, D. Defauchy, G. Régnier, Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers, Journal of Materials Processing Technology 225 (2015) 326‑336. DOI: https://doi.org/10.1016/j.jmatprotec.2015.04.030
  • [23] M. Li, Y. Han, M. Zhou, P. Chen, H. Gao, Y. Zhang, H. Zhou, Experimental investigating and numerical simulations of the thermal behavior and proces optimization for selective laser sintering of PA6, Journal of Manufacturing Processes 56/A (2020) 271‑279. DOI: https://doi.org/10.1016/j.jmapro.2020.04.080
  • [24] A. Franco, L. Romoli, Characterization of laser Energy consumption in sintering of polymer based powders, Journal of Materials Processing Technology 212/4 (2012) 917‑926. DOI: https://doi.org/10.1016/j.jmatprotec.2011.12.003
  • [25] J. Rudloff, M. Lang, S. Mohseni-Mofidi, C. Bierwisch, Experimental investigations for improved modelling of the laser sintering process of polymers, Procedia CIRP 94 (2020) 80‑84. DOI: https://doi.org/10.1016/j.procir.2020.09.016
  • [26] C.A. Chatham, T.E. Long, C.B. Williams, A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing, Progress in Polymer Science 93 (2019) 68‑95. DOI: https://doi.org/10.1016/j.progpolymsci.2019.03.003
  • [27] S. Berretta, Y. Wang, R. Davies, O.R. Ghita, Polymer viscosity, particle coalescence and mechanical performance in high-temperature laser sintering, Journal of Materials Science 51/10 (2016) 4778‑4794. DOI: https://doi.org/10.1007/s10853-016-9761-6
  • [28] M. Van den Eynde, L. Verbelen, P. Van Puyvelde, Assessing polymer powder flow for the application of laser sintering, Powder Technology 286 (2015) 151‑155. DOI: https://doi.org/10.1016/j.powtec.2015.08.004
  • [29] J. Li, S. Yuan, J. Zhu, W. Zhang, S. Li, C. Wang, Numerical investigation of novel process planning in the polymeric powder bed fusion, Journal of Manufacturing Processes 67 (2021) 195‑211. DOI: https://doi.org/10.1016/j.jmapro.2021.04.060
  • [30] F. Shen, S. Yuan, C. K. Chua, K. Zhou, Development of process efficiency maps for selective laser sintering of polymeric composite powders: Modeling and experimental testing, Journal of Materials Processing Technology 254 (2018) 52‑59. DOI: https://doi.org/10.1016/j.jmatprotec.2017.11.027
  • [31] H. Yaagoubi, H. Abouchadi, et M. Taha Janan, Numerical simulation of heat transfer in the selective laser sintering process of Polyamide12, Energy Reports 7/5 (2021) 189‑199. DOI: https://doi.org/10.1016/j.egyr.2021.08.089
  • [32] R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers, Progress in Materials Science 57/2 (2012) 229‑267. DOI: https://doi.org/10.1016/j.pmatsci.2011.04.001
  • [33] S. Singh, V.S. Sharma, A. Sachdeva, Optimization and Analysis of Shrinkage in Selective Laser Sintered Polyamide Parts, Materials and Manufacturing Processes 27/6 (2012) 707‑714. DOI: https://doi.org/10.1080/10426914.2011.593247
  • [34] H. Zarringhalam, C. Majewski, N. Hopkinson, Degree of particle melt in Nylon‐12 selective laser‐sintered parts, Rapid Prototyping Journal 15/2 (2009) 126‑132. DOI: https://doi.org/10.1108/13552540910943423
  • [35] A.E. Tontowi, T.H.C. Childs, Density prediction of crystalline polymer sintered parts at various powder bed temperatures, Rapid Prototyping Journal 7/3 (2001) 180‑184. DOI: https://doi.org/10.1108/13552540110395637
  • [36] L. Safai, J.S. Cuellar, G. Smit, A.A. Zadpoor, A review of the fatigue behavior of 3D printed polymers, Additive Manufacturing 28 (2019) 87‑97. DOI: https://doi.org/10.1016/j.addma.2019.03.023
  • [37] K.S.R. Chandran, Mechanical fatigue of polymers: A new approach to characterize the S-N behavior on the basis of macroscopic crack growth mechanism, Polymer 91 (2016) 222‑238. DOI: https://doi.org/10.1016/j.polymer.2016.03.058
  • [38] B. Van Hooreweder, F. De Coninck, D. Moens, R. Boonen, P. Sas, Microstructural characterization of SLS-PA12 specimens under dynamic tension/compression excitation, Polymer Testing 29/3 (2010) 319‑326. DOI: https://doi.org/10.1016/j.polymertesting.2009.12.006
  • [39] T.L. Starr, T.J. Gornet, J.S. Usher, The effect of proces conditions on mechanical properties of laser‐sintered nylon, Rapid Prototyping Journal 17/6 (2011) 418‑423. DOI: https://doi.org/10.1108/13552541111184143
  • [40] C. Majewski, H. Zarringhalam, N. Hopkinson, Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222/9 (2008) 1055‑1064. DOI: https://doi.org/10.1243/09544054JEM1122
  • [41] G.V. Salmoria, D. Hotza, P. Klauss, L.A. Kanis, C.R. M. Roesler, Manufacturing of Porous Polycaprolactone Prepared with Different Particle Sizes and Infrared Laser Sintering Conditions: Microstructure and Mechanical Properties, Advances in Mechanical Engineering 6 (2014) 640496. DOI: https://doi.org/10.1155/2014/640496
  • [42] S. Ziegelmeier, P. Christou, F. Wöllecke, C. Tuck, R. Goodridge, R. Hague, E. Krampe, E. Wintermantel, An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties, Journal of Materials Processing Technology 215 (2015) 239‑250. DOI: https://doi.org/10.1016/j.jmatprotec.2014.07.029
  • [43] D.L. Bourell, T.J. Watt, D.K. Leigh, B. Fulcher, Performance Limitations in Polymer Laser Sintering, Physics Procedia 56 (2014) 147‑156. DOI: https://doi.org/10.1016/j.phpro.2014.08.157
  • [44] S.R. Athreya, K. Kalaitzidou, S. Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering, Materials Science and Engineering: A 527/10‑11 (2010) 2637‑2642. DOI: https://doi.org/10.1016/j.msea.2009.12.028
  • [45] B. Van Hooreweder, J.-P. Kruth, High cycle fatigue properties of selective laser sintered parts in polyamide 12, CIRP Annals 63/1 (2014) 241‑244. DOI: https://doi.org/10.1016/j.cirp.2014.03.060
  • [46] J. Munguia, K. Dalgarno, Fatigue behaviour of laser-sintered PA12 specimens under four-point rotating bending, Rapid Prototyping Journal 20/4 (2014) 291‑300. DOI: https://doi.org/10.1108/RPJ-07-2012-0064
  • [47] J. Munguia, K. Dalgarno, Fatigue behaviour of laser sintered Nylon 12 in rotating and reversed bending tests, Materials Science and Technology 31/8 (2015) 904‑911. DOI: https://doi.org/10.1179/1743284715Y.0000000014
  • [48] U. Ajoku, N. Saleh, N. Hopkinson, R. Hague, P. Erasenthiran, Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220/7 (2006) 1077‑1086. DOI: https://doi.org/10.1243/09544054JEM537
  • [49] J.H. Koo, R. Ortiz, B. Ong, H. Wu, Polymer nanocomposites for laser additive manufacturing, in: M. Brandt (ed), Woodhead Publishing Series in Electronic and Optical Materials: Laser Additive Manufacturing, Woodhead Publishing, Sawston, 2017, 205‑235. DOI: https://doi.org/10.1016/B978-0-08-100433-3.00008-7
  • [50] J.R.C. Dizon, A.H. Espera Jr., Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Additive Manufacturing 20 (2018) 44‑67. DOI: https://doi.org/10.1016/j.addma.2017.12.002
  • [51] Z. Major, M. Lackner, A. Hössinger-Kalteis, T. Lück, Characterization of the Fatigue Behavior of SLS Thermoplastics, Procedia Structural Integrity 34 (2021) 191-198. DOI: https://doi.org/10.1016/j.prostr.2021.12.028
  • [52] A. Salazar, A.J. Cano, J. Rodríguez, Mechanical and fatigue behaviour of polyamide 12 processed via injection moulding and selective laser sintering. Analysis based on Kitagawa-Takahashi diagrams, Engineering Fracture Mechanics 275 (2022) 108825. DOI: https://doi.org/10.1016/j.engfracmech.2022.108825
  • [53] H. Amel, J. Rongong, H. Moztarzadeh, N. Hopkinson, Effect of section thickness on fatigue performance of laser sintered nylon 12, Polymer Testing 53 (2016) 204‑210. DOI: https://doi.org/10.1016/j.polymertesting.2016.05.027
  • [54] G.V. Salmoria, J.L. Leite, L.F. Vieira, A.T.N. Pires, C.R.M. Roesler, Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering, Polymer Testing 31/3 (2012) 411‑416. DOI: https://doi.org/10.1016/j.polymertesting.2011.12.006
  • [55] G.V. Salmoria, V.R. Lauth, M.R. Cardenuto, R.F. Magnago, Characterization of PA12/PBT specimens prepared by selective laser sintering, Optics and Laser Technology 98 (2018) 92‑96. DOI: https://doi.org/10.1016/j.optlastec.2017.07.044
  • [56] M. Blattmeier, G. Witt, J. Wortberg, J. Eggert, J. Toepker, Influence of surface characteristics on fatigue behaviour of laser sintered plastics, Rapid Prototyping Journal 18/2 (2012) 161‑171. DOI: https://doi.org/10.1108/13552541211212140
  • [57] A. Salazar, A. Rico, J. Rodríguez, J. Segurado Escudero, R. Seltzer, F. Martin de la Escalera Cutillas, Fatigue crack growth of SLS polyamide 12: Effect of reinforcement and temperature, Composites Part B: Engineering 59 (2014) 285‑292. DOI: https://doi.org/10.1016/j.compositesb.2013.12.017
  • [58] A. Salazar, A. Rico, J. Rodríguez, J. Segurado Escudero, R. Seltzer, F. Martin de la Escalera Cutillas, Monotonic loading and fatigue response of a bio-based polyamide PA11 and a petrol-based polyamide PA12 manufactured by selective laser sintering, European Polymer Journal 59 (2014) 36‑45. DOI: https://doi.org/10.1016/j.eurpolymj.2014.07.016
  • [59] S. Negi, S. Dhiman, R.K. Sharma, Investigating the surface roughness of SLS fabricated glass-filled polyamide parts using response surface methodology, Arabian Journal for Science and Engineering 39/12 (2014) 9161‑9179. DOI: https://doi.org/10.1007/s13369-014-1434-7
  • [60] A. Sachdeva, S. Singh, V.S. Sharma, Investigating surface roughness of parts produced by SLS process, The International Journal of Advanced Manufacturing Technology 64 (2013) 1505‑1516. DOI: https://doi.org/10.1007/s00170-012-4118-z
  • [61] D. Pradeep, T. Rameshkumar, M. Kumar, Parameter optimization of SLS Sinterstation 2500plus using GRA for better surface finish and dimensional accuracy, Materials Today: Proceedings 45/9 (2021) 8105‑8109. DOI: https://doi.org/10.1016/j.matpr.2021.01.638
  • [62] M.E. Imanian, F.R. Biglari, Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design, Journal of Manufacturing Processes 75 (2022) 154‑169. DOI: https://doi.org/10.1016/j.jmapro.2021.12.065
  • [63] S. Petzold, J. Klett, A. Schauer, T.A. Osswald, Surface roughness of polyamide 12 parts manufactured using selective laser sintering, Polymer Testing 80 (2019) 106094. DOI: https://doi.org/10.1016/j.polymertesting.2019.106094
  • [64] L. Zárybnická, J. Petrů, P. Krpec, M. Pagáč, Effect of Additives and Print Orientation on the Properties of Laser Sintering-Printed Polyamide 12 Components, Polymers 14/6 (2022) 1172. DOI: https://doi.org/10.3390/polym14061172
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2803aff8-93e9-4831-9ccf-3285789068b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.