PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of CaCO3 in pultruded glass fiber/unsaturated polyester resin composite on flexural creep behavior using conventional and time-temperature superposition principle methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu CaCO3 na pełzanie przy zginaniu otrzymanego w procesie pultruzji kompozytu włókno szklane/nienasycona żywica poliestrowa za pomocą metody konwencjonalnej i metody superpozycji czasowo-temperaturowej
Języki publikacji
EN
Abstrakty
EN
The effect of calcium carbonate on the creep phenomenon of glass fiber/unsaturated polyester resin composites (GFRP) (obtained by pultrusion) was investigated due to failure that happened during installation of one of the composite transmission tower. To assess long-term creep and predict the life of composites, a conventional bending method with 45-day creep and time-temperature superposition principle (TTSP) were used. In the conventional method, the composites (with and without calcium carbonate) underwent only slight deformation. It was found that their lifetime could be 25 years. However, based on the standard curve obtained by the TTSP method, significant differences were shown in the stability of calcium carbonate composite samples at 95°C (111 days) and 160°C (11 days). It was found that the addition of calcium carbonate extends the service life of the tested composites. Thus, the results obtained by the conventional method do not reflect the real behavior of the samples over time. On the other hand, the TTSP method allows better estimation of the long-term durability of composites.
PL
Zbadano wpływ węglanu wapnia na zjawisko pełzania kompozytu włókno szklane/nienasycona żywica poliestrowa (GFRP) (otrzymanego metodą pultruzji). Do oceny długoterminowego pełzania i prognozowania czasu użytkowania kompozytów stosowano konwencjonalną metodę zginania z 45-dniowym pełzaniem oraz metodę superpozycji czasowo-temperaturowej (TTSP). W konwencjonalnej metodzie kompozyty (z węglanem wapnia i bez niego) uległy tylko niewielkim odkształceniom. Stwierdzono, że czas ich użytkowania może wynosić 25 lat. Natomiast na podstawie krzywej wzorcowej, otrzymanej metodą TTSP, wykazano istotne różnice trwałości próbek kompozytów z węglanem wapnia w temperaturze 95°C (111 dni) i 160°C (11 dni). Stwierdzono, że dodatek węglanu wapnia wydłuża czas użytkowania badanych kompozytów. Wyniki uzyskane konwencjonalną metodą nie odzwierciedlają więc rzeczywistego zachowania się próbek w czasie, natomiast metoda TTSP umożliwia lepsze oszacowanie długoterminowej trwałości kompozytów.
Czasopismo
Rocznik
Strony
792--800
Opis fizyczny
Bibliogr. 49 poz., rys. kolor.
Twórcy
autor
  • Universiti Putra Malaysia, Department of Aerospace Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Aerospace Malaysia Research Centre (AMRC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Department of Aerospace Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Aerospace Malaysia Research Centre (AMRC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Universiti Putra Malaysia, Department of Mechanical Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Department of Mechanical Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
  • Universiti Putra Malaysia, Department of Aerospace Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia.
  • Universiti Putra Malaysia, Aerospace Malaysia Research Centre (AMRC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia.
Bibliografia
  • [1] Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N.: Journal of Materials Research and Technology 2019, 8 (6), 56. http://dx.doi.org/10.1016/j.jmrt.2019.09.033
  • [2] Asyraf M.R.M., Ishak M.R., Sapuan S.M. et al.: “Creep test rig for full-scale composite cross-arm, simulation modelling and analysis”, Seminar Enau Kebangsaan, Bahau, Negeri Sembilan, Malaysia 2019.
  • [3] Lou W.J., Wang D., Shen G.H. et al.: Journal of Huazhong University of Science and Technology (Natural Science Edition) 2013, 41 (4), 114.
  • [4] Rao G.V.: Pergamon 1995, 57, 81. http://dx.doi.org/10.1016/0045-7949(94)00597-V
  • [5] Jaafar C.N.A., Asyraf M.R.M., Zainol I.: International Journal of Engineering and Technology 2018, 7 (4), 258.
  • [6] Ilyas R.A., Sapuan S.M., Atiqah A. et al.: Polymer Composites 2020, 41, 459, http://dx.doi.org/10.1002/pc.25379
  • [7] Shahroze R.M., Chandrasekar M., Senthilkumar K. et al.: “A review on the various fiber treatment tech-niques used for the fiber surface modification of the sugar palm fibers”, Seminar Enau Kebangsaan, Bahau, Negeri Sembilan, Malaysia 2019.
  • [8] Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N.: Journal of Materials Research and Technology 2020, 9, 2357. http://dx.doi.org/10.1016/j.jmrt.2019.12.067
  • [9] Asyraf M.R.M., Ishak M.R., Sapuan S.M. et al.: Journal of Materials Research and Technology 2020, 9, 6759. http://dx.doi.org/10.1016/j.jmrt.2020.01.013
  • [10] Abral H., Ariksa J., Mahardika M. et al.: Food Hydrocolloids 2020, 98, 105266. http://dx.doi.org/10.1016/j.foodhyd.2019.105266
  • [11] Atikah M.S.N., Ilyas R.A., Sapuan S.M. et al.: Polimery 2019, 64, 24. http://dx.doi.org/10.14314/polimery.2019.10.5
  • [12] Atiqah A., Jawaid M., Sapuan S.M. et al.: Journal of Materials Research and Technology 2019, 8 (5), 3726. http://dx.doi.org/10.1016/j.jmrt.2019.06.032
  • [13] Azammi A.M.N., Ilyas R.A., Sapuan S.M. et al.: “Interfaces in Particle and Fiber Reinforced Composites” in “Woodhead Publishing Series in Composites Science and Engineering” 2020, p. 29. http://dx.doi.org/10.1016/B978-0-08-102665-6.00003-0
  • [14] Ilyas R.A., Sapuan S.M.: Current Organic Synthesis 2020, 16, 1068. http://dx.doi.org/10.2174/157017941608200120105616
  • [15] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Materials Research and Technology 2019, 8, 4819. http://dx.doi.org/10.1016/j.jmrt.2019.08.028
  • [16] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Biobased Materials and Bioenergy 2020, 14, 234. http://dx.doi.org/10.1166/jbmb.2020.1951
  • [17] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: “Nanocrystalline Materials” (Ed. Movahedi B.) Publisher: IntechOpen 2019, pp. 1–30. http://dx.doi.org/10.5772/intechopen.87001
  • [18] Ilyas R.A., Sapuan S.M., Ishak M.R.: Carbohydrate Polymers 2018, 181, 1038. http://dx.doi.org/10.1016/j.carbpol.2017.11.045
  • [19] Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S.: Carbohydrate Polymers 2018, 202, 186. http://dx.doi.org/10.1016/j.carbpol.2018.09.002
  • [20] Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A.: Polimery 2019, 64, 12. http://dx.doi.org/10.14314/polimery.2020.2.5
  • [21] Sapuan S.M., Ilyas R.A., Ishak M.R. et al.: “Sugar Palm Biofibers, Biopolymers, and Biocomposites” (Eds. Sapuan S.M., Sahari J., Ishak M.R., Sanyang M.L.), CRC Press is an imprint of Taylor & Francis Group, 2018, Chapter 12, pp. 246—264. http://dx.doi.org/10.1201/9780429443923-12
  • [22] Aisyah H.A., Paridah M.T., Sapuan S.M. et al.: International Journal of Polymer Science 2019, 2019. http://dx.doi.org/10.1155/2019/5258621
  • [23] Hazrol M.D., Sapuan S.M., Ilyas R.A. et al.: Polimery 2020, 65, 363. http://dx.doi.org/10.14314/polimery.2020.5.4
  • [24] Johari A.N., Ishak M.R., Leman Z. et al.: “Fabrication and cut-in speed enhancement of Savonius vertical axis wind turbine (SVAWT) with hinged blade using fiberglass composites”, Seminar Enau Kebangsaan, Bahau, Negeri Sembilan, Malaysia 2019.
  • [25] Mansor M.R., Sapuan S.M., Zainuddin E.S., Nuraini A.A.: Materials and Design 2014, 54, 473. http://dx.doi.org/10.1016/j.matdes.2013.08.064
  • [26] Mazani N., Sapuan S.M,. Sanyang M.L. et al.: “Design and Fabrication of a Shoe Shelf from Kenaf Fiber Reinforced Unsaturated Polyester Composites” in “Lignocellulose for Future Bioeconomy”, Amsterdam, Netherland, Elsevier Inc. 2019, p. 315. http://dx.doi/org/10.1016/B978-0-12-816354-2.00017-7
  • [27] Yang X., Li N., Peng Z.: IEEE Transactions on Dielectrics and Electrical Insulation 2014, 21, 1660. http://dx.doi.org/10.1109/TDEI.2014.004130
  • [28] Lu W., Lin H., Wu D.: Polymer 2006, 47, 4440. http://dx.doi.org/10.1016/j.polymer.2006.03.107
  • [29] Soma D., Acharya S.K.: Advances Polymer Science and Technology: An International Journal 2014, 4 (1), 1.
  • [30] Burgeuno R., Quagliata M.J., Mohanty A.K.: Composites Part A. Applied Science and Manufacturing 2004, 35 (6), 645. https://doi.org/10.1016/j.compositesa.2004.02.012
  • [31] Murafa A.V., Bobyreva N.I., Khozin V.G.: Mechanics of Composite Materials 1996, 32 (1), 86. http://dx.doi.org/10.1007/BF02254653
  • [32] Hariharashayee D., Hanif M.A., Aravind S.: International Journal of Advance Research and Development 2018, 3 (4), 294.
  • [33] Raghavendra G., Kumar K.A., Kumar M.H.: Polymer Composites 2017, 5 (1), 516. http://dx.doi.org/10.1002/pc.23610
  • [34] Chaudhary S.K., Singh K.K., Venugopal R.: materialstoday: PROCEEDINGS 2018, 5 (1), 184. http://dx.doi.org/10.1016/j.matpr.2017.11.070
  • [35] Anand A., Banerjee P., Prusty R.K.: IOP Conference Series: Materials Science and Engineering 2018, 1, 338. http://dx.doi.org/10.1088/1757-899X/338/1/012020
  • [36] Asyraf M.R.M., Ishak M.R., Chandrasekar M., Razman M.R.: Jurnal Teknologi 2019, 81 (4), 155. http//dx.doi.org/10.11113/jt.v81.13402
  • [37] Stochioiu C., Chettah A., Piezel B.: AIP Conference Proceedings 2018, 1932.
  • [38] Samarasinghe S: “Long-term creep modeling of wood using time temperature superposition principle”, Blacksburg, V.A.: Virginia Tech, 1991.
  • [39] Perry C.C., Lissner H.R: “The strain gauge primer”, New York, USA: Second Edi McGraw-Hill, 1962.
  • [40] Ghosh S.K., Prusty R.K., Rathore D.K., Ray B.C.: Composites Part C: Applied Science and Manufacturing 2017, 102, 166. http://doi.org/10.1016/j.compositesa.2017.08.001
  • [41] Guimaraes G.B: “Parallel-lay aramid ropes for use in structural engineering”, United Kingdom: PhD Thesis submitted to University of London, 1998.
  • [42] Ferry J.D: “Viscoelastic Properties of Polymers”, New York: Third ed., John Wiley & Sons., 1980.
  • [43] Pooler D.J., Smith L.V.: Journal of Thermoplastic Composite Materials 2004, 17, 425. http://dx.doi.org/10.1177/0892705704038220
  • [44] Koemer R.M., Lord A.E., Hsuan Y.H.: Geotextiles and Geomembranes 1992, 11 (2), 151. http://doi.org/10.1016/0266-1144(92)90042-9
  • [45] Zornberg J.G., Byler B.R. Knudsen J.W.: Journal of Geotechnical and Geoenvironmental Engineering 2004, 130, 1158. h t t p : / / d o i . o r g / 1 0 . 1 0 6 1 / ( A S C E ) 1 0 9 0 -0241(2004)130:11(1158)
  • [46] Somaiah A., Musalaiah G., Kumar A.A.: International Journal of Engineering Technology Science and Research 2018, 5 (5), 605.
  • [47] Nan N., DeVallance D.B.: Journal of Materials Science 2017, 52, 8247. http://dx.doi.org/10.1007/s10853-017-1040-7
  • [48] Yao Z., Wu D., Chen C., Zhang M.: Composites Part A: Applied Science and Manufacturing 2013, 50, 65. http://dx.doi.org/10.1016/j.compositesa.2013.03.015
  • [49] Jaafar C.N.A., Asyraf M.R.M., Zainol I.: International Journal of Technology 2018, 32 (1), 258. http://dx.doi.org/10.14419/ijet.v7i4.35.22743
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27fcf7e3-33ae-475e-a447-6eddc97dfd14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.