PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control of simultaneous effects of the temperature, indium composition and theimpact ionization process on the performance of the InN/InₓGa₁₋xN quantum dot solar cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact ionization in semiconductor materials is a process that produces multiple charge carrier pairs from a single excitation. This mechanism constitutes a possible road to increase the efficiency of the p-n and p-i-n solar cells junctions. Our study considers the structure of InN/InGaN quantum dot solar cell in the calculation. In this work, we study the effect of indium concentration and temperature on the coefficient of the material type parameter of the impact ionization process for a p(InGaN)-n(InGaN) and p(InGaN)-i(QDs-InN)-n(InGaN) solar cell. Next, we investigate the effect of perturbation such as temperature and indium composition on conventional solar cell’s (p(InGaN)-n(InGaN)) and solar cells of the third generation with quantum dot intermediate band IBSC (p(InGaN-i(QD-InN)-n(InGaN)) by analyzing their behaviour in terms of efficiency of energy conversion at the presence of the impact ionization process. Our numerical results show that the efficiency is strongly influenced by all of these parameters. It is also demonstrated that decreased with the increase of indium concentration and temperature which contributes to an overall improvement of the conversion efficiency.
Słowa kluczowe
Twórcy
  • Laboratory of Condensed Matter and Renewable Energy, Faculty of Sciences and Technology, University Hassan II of Casablanca, BP146, Casablanca, Morocco
  • Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco
  • Laboratory of Condensed Matter and Renewable Energy, Faculty of Sciences and Technology, University Hassan II of Casablanca, BP146, Casablanca, Morocco
  • Laboratory of Condensed Matter and Renewable Energy, Faculty of Sciences and Technology, University Hassan II of Casablanca, BP146, Casablanca, Morocco
  • Laboratory of Condensed Matter and Renewable Energy, Faculty of Sciences and Technology, University Hassan II of Casablanca, BP146, Casablanca, Morocco
  • Faculty of Mathematics and Natural Sciences, Institute of Physics, J. Dlugosz University of Czestochowa, Al. Armii Krajowej 13/15, Czestochowa, Poland
Bibliografia
  • [1] V. Mlinar, Engineered nanomaterials for solar energy conversion,Nanotechnology 24 (2013), 042001, http://dx.doi.org/10.1088/0957-4484/24/4/042001.
  • [2] M.A. Green, S.P. Bremner, Energy conversion approaches and materials forhigh-efficiency photovoltaics, Nat. Mater. 16 (2017) 23, http://dx.doi.org/10.1038/nmat4676.
  • [3] A. Eddiai, M. Meddad, S. Touhtouh, A. Hajjaji, Y. Boughaleb, D. Guyomar, S.Belkhiat, B. Sahraoui, Mechanical characterization of an electrostrictivepolymer for actuation and energy harvesting, J. Appl. Phys. 111 (2012),124115, http://dx.doi.org/10.1063/1.4729532.
  • [4] A.K. Arof, H.K. Jun, L.N. Sim, M.Z. Kufian, B. Sahraoui, Gel polymer electrolytebased on LiBOB and PAN for the application in dye-sensitized solar cells, Opt.Mater. 36 (2013) 35–139, http://dx.doi.org/10.1016/j.optmat.2013.04.027.
  • [5] A. Luque, A. Marti, The intermediate band solar cell: progress toward therealization of an attractive concept, Adv. Mater. 22 (2010) 160–174, http://dx.doi.org/10.1002/adma.200902388.
  • [6] A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photoninduced transitions at intermediate levels, Phys. Rev. Lett. 78 (1997), 5014, http://dx.doi.org/10.1103/PhysRevLett.78.5014.
  • [7] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junctionsolar cells, J. Appl. Phys. 32 (1961) 510–519, http://dx.doi.org/10.1063/1.1736034.
  • [8] M.C. Beard, A.G. Midgett, M.C. Hanna, J.M. Luther, B.K. Hughes, A.J. Nozik,Comparing multiple exciton generation in quantum dots to impact ionizationin bulk semiconductors: implications for enhancement of solar energyconversion, Nano Lett. 10 (2010) 3019–3027, http://dx.doi.org/10.1021/nl101490z.
  • [9] O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in aquantum dot solar cell, Science 334 (2011) 1530–1533, http://dx.doi.org/10.1126/science.1209845.
  • [10] S.M. Hubbard, C.D. Cress, C.G. Bailey, R.P. Raffaelle, S.G. Bailey, D.M. Wilt, Effect of strain compensation on quantum dot enhanced GaAs solar cells, Appl. Phys. Lett. 92 (2008), 123512, http://dx.doi.org/10.1063/1.2903699.
  • [11] T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, S. Niki, Multi-stackedquantum dot solar cells fabricated by intermittent deposition of InGaAs, Sol.Energy Mater. Sol. Cells 95 (2011) 163–166, http://dx.doi.org/10.1016/j.solmat.2010.04.040.
  • [12] A. Martí, N. Lopez, E. Antolin, E. Canovas, A. Luque, C.R. Stanley, C.D. Farmer, P. Diaz, Emitter degradation in quantum dot intermediate band solar cells, Appl.Phys. Lett. 90 (2007), 23351, http://dx.doi.org/10.1063/1.2747195.
  • [13] G. Jolley, H.F. Lu, L. Fu, H.H. Tan, C. Jagadish, Electron-hole recombinationproperties of in0.5Ga0.5As/GaAs quantum dot solar cells and the influence onthe open circuit voltage, Appl. Phys. Lett. 97 (2010), 123505, http://dx.doi.org/10.1063/1.3492836.
  • [14] P.T. Landsberg, H. Nussbaumer, G. Willeke, Band-band impact ionization andsolar cell efficiency, J. Appl. Phys. 74 (1993) 1451–1452, http://dx.doi.org/10.1063/1.354886.
  • [15] A. Luque, A. Martí, L. Cuadra, Impact-ionization-assisted intermediate bandsolar cell, IEEE Trans. Electron Devices 50 (2003) 447–454, http://dx.doi.org/10.1109/TED.2003.809024.
  • [16] S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficienciesexceeding unity due to impact ionization in silicon solar cells, Appl. Phys. Lett.63 (1993) 2405–2407, http://dx.doi.org/10.1063/1.110489.
  • [17] H. Movla, Influence of the inverse Auger process on the performance ofInxGa1− xN/GaN quantum dot solar cells, Opt. – Int. J. Light Electron. Opt. 127(2016) 4799–4802, http://dx.doi.org/10.1016/j.ijleo.2016.01.156.
  • [18] N.E. Gorji, Impact ionization effects on the efficiency of the intermediate bandsolar cells, Physica E Low. Dimens. Syst. Nanostruct. 44 (2012) 1608–1611,http://dx.doi.org/10.1016/j.physe.2012.04.004.
  • [19] S.W. Feng, C.M. Lai, C.H. Chen, W.C. Sun, L.W. Tu, Theoretical simulations ofthe effects of the indium content, thickness, and defect density of the i-layeron the performance of p-i-n InGaN single homojunction solar cells, J. Appl.Phys. 108 (2009), 17350, http://dx.doi.org/10.1063/1.3484040.
  • [20] X.M. Cai, S.W. Zeng, B.P. Zhang, Fabrication and characterization of InGaN pinhomojunction solar cell, Appl. Phys. Lett. 95 (2009), 173504, http://dx.doi.org/10.1063/1.3254215.
  • [21] A. Asgari, K. Khalili, Temperature dependence of InGaN/GaN multiplequantum well based high efficiency solar cell, Sol. Energy Mater. Sol. Cells 95(2011) 3124–3129, http://dx.doi.org/10.1016/j.solmat.2011.07.001.
  • [22] H. El Ghazi, A. Jorio, Electron-hole transition in spherical QD-QWnanoparticles based on GaN|(In, Ga) N| GaN under hydrostatic pressure, Physica B Condens. Matter 15 (2013) 42–45, http://dx.doi.org/10.1016/j.physb.2013.07.025.
  • [23] N. Ben Afkir, E. Feddi, F. Dujardin, M. Zazoui, J. Meziane, Photovoltaicconversion efficiency of InN/InxGa1-xN quantum dot intermediate band solarcells, Physica B Condens. Matter 1 (2018) 10–16, http://dx.doi.org/10.1016/j.physb.2018.01.005.
  • [24] H. El Ghazi, A. Jorio, Temperature dependence of interband recombinationenergy in symmetric (In, Ga) N spherical quantum dot-quantum well, PhysicaB Condens. Matter 1 (2014) 64–66, http://dx.doi.org/10.1016/j.physb.2013.09.017.
  • [25] Y.U. Peter, M. Cardona, Fundamentals of Semiconductors: Physics AndMaterials Properties, Springer Science & Business Media, 2010, April 7.
  • [26] Y.P. Varshni, Temperature dependence of the energy gap in semiconductors,physica. 34 (1967) 149–154, http://dx.doi.org/10.1016/0031-8914(67)90062-6.
  • [27] A. Luque, A. Martı, C. Stanley, N. López, L. Cuadra, D. Zhou, J.L. Pearson, A. McKee, General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence, J. Appl. Phys. 96 (2004) 903–909, http://dx.doi.org/10.1063/1.1760836.
  • [28] A. Luque, A. Martí, L. Cuadra, Thermodynamic consistency of sub-bandgapabsorbing solar cell proposals, IEEE Trans. Electron Devices 48 (2001)2118–2124, http://dx.doi.org/10.1109/16.944204.
  • [29] J.J. Wysocki, P. Rappaport, Effect of temperature on photovoltaic solar energyconversion, J. Appl. Phys. 31 (1960) 571–578, http://dx.doi.org/10.1063/1.1735630.
  • [30] J.C. Fan, Theoretical temperature dependence of solar cell parameters, Sol.Cells 17 (1986) 309–315, http://dx.doi.org/10.1016/0379-6787(86)90020-7.
  • [31] P. Singh, S.N. Singh, M. Lal, M. Husain, Temperature dependence of I–Vcharacteristics and performance parameters of silicon solar cell, Sol. EnergyMater. Sol. Cells 92 (2008) 1611–1616, http://dx.doi.org/10.1016/j.solmat.2008.07.010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27f787de-2156-4799-ad12-732600c64b7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.