Identifiers
Title variants
Przegląd zastosowania skanowania laserowego w trudnych środowiskach
Languages of publication
Abstracts
Terrestrial Laser Scanning (TLS) technology has become a highly effective tool for capturing detailed and precise 3D data across various fields, expecially for challenging environments such as complex terrain. Its key features, including high precision and rapid data acquisition, make it extensively used in mapping, geology, construction, and mining arrea. TLS is particularly beneficial in the mining sector, aiding in detailed mapping, monitoring slope stability, and volume estimation. The technology's ability to quickly capture millions of data points enhances efficiency and reduces costs compared to traditional surveying methods. Additionally, TLS is adaptable to various environments, from urban settings to rugged terrains, making it valuable for environmental monitoring and research. Reviews have highlighted its effectiveness in monitoring ground deformations, enhancing accuracy in construction projects, and improving safety and efficiency in challenging environments. The integration of TLS with other technologies, such as UAV photogrammetry and GNSS, further enhances its capabilities, providing comprehensive data for various applications. This study aims to provide a thorough overview of the application of TLS in complex terrains, using data from publications over recent years. The reviewed literature demonstrates that TLS can be effectively applied in challenging environments.
Technologia skanowania laserowego (TLS) stała się wysoce skutecznym narzędziem do rejestrowania szczegółowych i precyzyjnych danych 3D w różnych dziedzinach, zwłaszcza w trudnych środowiskach, takich jak skomplikowane tereny. Jej kluczowe cechy, w tym wysoka precyzja i szybkie pozyskiwanie danych, sprawiają, że jest szeroko stosowana w mapowaniu, geologii, budownictwie i górnictwie. TLS jest szczególnie korzystna w sektorze górniczym, wspomagając szczegółowe mapowanie, monitorowanie stabilności zboczy i szacowanie objętości. Zdolność technologii do szybkiego rejestrowania milionów punktów danych zwiększa efektywność i obniża koszty w porównaniu z tradycyjnymi metodami pomiarowymi. Ponadto TLS jest dostosowana do różnych środowisk, od miejskich po trudne tereny, co czyni ją cenną dla monitorowania środowiska i badań. Recenzje podkreśliły jej skuteczność w monitorowaniu deformacji gruntu, zwiększaniu dokładności w projektach budowlanych oraz poprawie bezpieczeństwa i efektywności w badaniach tuneli. Integracja TLS z innymi technologiami, takimi jak fotogrametria UAV i GNSS, dodatkowo zwiększa jej możliwości, dostarczając kompleksowych danych do różnych zastosowań. Niniejsze badanie ma na celu dostarczenie szczegółowego przeglądu zastosowania TLS w skomplikowanych terenach, wykorzystując dane z publikacji z ostatnich lat. Przeglądana literatura pokazuje, że TLS może być skutecznie stosowana w trudnych środowiskach.
Publisher
Journal
Year
Volume
Pages
art. no. 93
Physical description
Bibliogr. 43 poz., rys., zdj.
Contributors
author
- Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Hanoi, Vietnam
References
- 1. Bazarnik, M. Slope stability monitoring in open pit mines using 3D terrestrial laser scanning. in E3S Web of Conferences. 2018. EDP Sciences.
- 2. Fengyun, G. and X. Hongquan. Status and development trend of 3D laser scanning technology in the mining field. in 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013). 2013. Atlantis Press.
- 3. Korandová, B. and M. Krupa, The application of terrestrial laser scanning for the management of mining in real time. International Multidisciplinary Scientific GeoConference: SGEM, 2018. 18(2.2): p. 1011-1018.
- 4. Berenyi, A., T. Lovas, and A. Barsi, Terrestrial laser scanning–civil engineering applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010. 38(Part 5): p. 80-85.
- 5. Buckley, S.J., et al., Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 2008. 165(3): p. 625-638.
- 6. Mukupa, W., et al., A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey review, 2017. 49(353): p. 99-116.
- 7. Wu, C., et al., Application of terrestrial laser scanning (TLS) in the architecture, engineering and construction (AEC) industry. Sensors, 2021. 22(1): p. 265.
- 8. Teng, J., et al., Review on the research and applications of TLS in ground surface and constructions deformation monitoring. Sensors, 2022. 22(23): p. 9179.
- 9. Wang, W., et al., Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition), 2014. 1(5): p. 325-337.
- 10. Jones, L. and P. Hobbs, The application of terrestrial LiDAR for geohazard mapping, monitoring and modelling in the British Geological Survey. Remote Sensing, 2021. 13(3): p. 395.
- 11. Telling, J., et al., Review of Earth science research using terrestrial laser scanning. Earth-Science Reviews, 2017. 169: p. 35-68.
- 12. Kekeç, B., et al., Applications of Terrestrial Laser Scanning (TLS) in Mining: A Review. Türkiye Lidar Dergisi, 2021. 3(1): p. 31-38.
- 13. Prakash, A., et al., Utility of Terrestrial Laser Scanner in Mining. Mining Mazma, 12-14 October, 2019: p. 1-13.
- 14. Singh, S.K., B.P. Banerjee, and S. Raval, A review of laser scanning for geological and geotechnical applications in underground mining. International Journal of Mining Science and Technology, 2023. 33(2): p. 133-154.
- 15. https://floor-dynamics.com/using-laser-scanners-to-measure-floor-surface-regularity/.
- 16. Jiang, N., et al., A fusion method using terrestrial laser scanning and unmanned aerial vehicle photogrammetry for landslide deformation monitoring under complex terrain conditions. IEEE Transactions on Geoscience and Remote Sensing, 2022. 60: p. 1-14.
- 17. Jaboyedoff, M., et al., Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Canadian Geotechnical Journal, 2009. 46(12): p. 1379-1390.
- 18. Kenner, R., et al., Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps. Cold Regions Science and Technology, 2011. 67(3): p. 157-164.
- 19. Miura, N. and Y. Asano, Effective acquisition protocol of terrestrial laser scanning for underwater topography in a steep mountain channel. River Research and Applications, 2016. 32(7): p. 1621-1631.
- 20. Longoni, L., et al., Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning. Remote Sensing, 2016. 8(3): p. 241.
- 21. Šašak, J., et al., Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain. Remote Sensing, 2019. 11(18): p. 2154.
- 22. Błaszczyk, M., et al., Combined use of aerial photogrammetry and terrestrial laser scanning for detecting geomorphological changes in Hornsund, Svalbard. Remote Sensing, 2022. 14(3): p. 601.
- 23. Bremer, M. and O. Sass, Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology, 2012. 138(1): p. 49-60.
- 24. Xiong, L., et al., Detectability of repeated airborne laser scanning for mountain landslide monitoring. Geosciences, 2018. 8(12): p. 469.
- 25. Xu, Z., et al., Registration of terrestrial laser scanning surveys using terrain-invariant regions for measuring exploitative volumes over open-pit mines. Remote Sensing, 2019. 11(6): p. 606.
- 26. Bing, S., et al., Reconstructing DEM using TLS point cloud data and NURBS surface. Transactions of Nonferrous Metals Society of China, 2015. 25(9): p. 3165-3172.
- 27. Gu, Y., et al., Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: An example of Wangjiata coal mine, China. Bulletin of engineering geology and the environment, 2020. 79: p. 3575-3583.
- 28. Ghabraie, B., et al., Application of 3D laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movement. International Journal of Rock Mechanics and Mining Sciences, 2015. 80: p. 219-230.
- 29. Wang, L., et al., Automatic deformation extraction method of buildings in mining areas based on TLS point clouds. IEEE Access, 2021. 10: p. 127817-127824.
- 30. Kukutsch, R., et al., Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of sustainable mining, 2015. 14(1): p. 30-37.
- 31. Van der Merwe, J. and D.C. Andersen, Applications and benefits of 3D laser scanning for the mining industry. Journal of the Southern African institute of Mining and Metallurgy, 2013. 113(3): p. 00-00.
- 32. Chen, H., et al., 3D Reconstruction of Mining Area Based on Terrestrial Laser Scanner and Calculation of Extraction. Applied Mechanics and Materials, 2013. 325: p. 1787-1791.
- 33. https://geo-matching.com/articles/how-laser-scanning-technology-benefits-mine-expansion.
- 34. Conforti, D. and T. Optech, Using Static and Mobile Laser Scanners to Measure and Manage Open Pit Mines. Canada: Optech Incorporated, 2017.
- 35. Blistan, P., et al., TLS and SfM approach for bulk density determination of excavated heterogeneous raw materials. Minerals, 2020. 10(2): p. 174.
- 36. Cerekwicki, M.M., Application of terrestrial laser scanning for characterizing discontinuities in a limestone quarry Tecnico Lisboa, 2020.
- 37. Tong, X., et al., Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 2015. 7(6): p. 6635-6662.
- 38. Vassena, G. and A. Clerici, Open pit mine 3D mapping by tls and digital photogrammetry: 3D model update thanks to a slam based approach. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018. 42(2): p. 1145-1148.
- 39. Long, N.Q., et al., Accuracy assessment of mine walls’ surface models derived from terrestrial laser scanning. International Journal of Coal Science & Technology, 2018. 5: p. 328-338.
- 40. Fowler, A. and A. Geier. Field test of long range terrestrial laser scanner and ground-based synthetic aperture radar for area monitoring in open pit mines. in FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics. 2015. Australian Centre for Geomechanics.
- 41. Zhou, D., et al., GPS/terrestrial 3D laser scanner combined monitoring technology for coal mining subsidence: a case study of a coal mining area in Hebei, China. Natural hazards, 2014. 70: p. 1197-1208.
- 42. Fotheringham, M. and D.R. Paudyal, Combining terrestrial scanned datasets with UAV point clouds for mining operations. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021. 4: p. 129-138.
- 43. https://www.conservesolution.com/blog/evaluation-of-3d-laser-scanning-for-volume-calculations/.
Notes
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.baztech-27f2d573-fc2e-496c-8535-6a817006e8c3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.