Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The paper analyzes the influence of air mass movement on moving (the leeway) surface water in the Świnoujście–Szczecin fairway region on the Szczecin Lagoon. The Szczecin Lagoon includes waters of the Odra River estuary (Poland’s second largest river) and the southern Baltic Sea. To calculate the leeway parameters, a relevant surface drifter was outlined and constructed. The data on the leeway of the drifter was obtained from in-situ experiments conducted on the Szczecin Lagoon in the summer of 2018. In turn, the air mass movement data was recorded at meteorological stations in Trzebież and Świnoujście. A statistical analysis of the leeway parameters of the drifter was also presented. Distributions of the leeway and wind speeds in the Świnoujście–Szczecin fairway regions were established. Moreover, linear regressions between the leeway and wind parameters were performed by decomposing the leeway into its downwind and crosswind components for each 10-minute sample. It is worth highlighting that relationships between these components of the leeway and wind parameters were studied for weak, medium, and stronger winds. This research may be useful for increasing navigation safety in the Świnoujście–Szczecin fairway regions on the Szczecin Lagoon.
Słowa kluczowe
Rocznik
Tom
Strony
62--71
Opis fizyczny
Bibliogr. 17 poz., rys. tab.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Navigation 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
- Maritime University of Szczecin, Faculty of Navigation 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
- Maritime University of Szczecin, Faculty of Navigation 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
- 1. Act (1991) Act of 21 March 1991 on the Maritime Areas of the Republic of Poland and Maritime Administration (Official Gazette No. 32, as amended).
- 2. Allen, A.A. & Plourde, J.V. (1999) Review of leeway: field experiments and implementation. USCG R&D center technical report CG-D-08-99.
- 3. Allen, A.A. (2005) Leeway divergence. USCG R&D center technical report CG-D-05-05.
- 4. BHMW (2009) Locja Bałtyku. Wybrzeże Polskie (502). Wydanie IX. Biuro Hydrograficzne Marynarki Wojennej.
- 5. Breivik, Ø. & Allen, A.A. (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems 69 (1–2), pp. 99–113.
- 6. Breivik, Ø., Allen, A.A., Maisondieu, C. & Roth, J.C. (2011) Wind-induced drift of objects at sea: The leeway field method. Applied Ocean Research 33, pp. 100–109.
- 7. Brillinger, D.R. & Stewart, B.S. (2010) Stochastic modelling of particle movement with application to marine biology and oceanography. Journal of Statistical Planning and Inference 140, pp. 3597–3607.
- 8. Brushett, B.A., Allen, A.A., Futch, V.C., King, B.A. & Lemckert, C.J. (2014) Determining the leeway drift characteristics of tropical Pacific island craft. Applied Ocean Research 44, pp. 92–101.
- 9. Delpeche-Ellmann, N., Torsvik, T. & Soomere, T. (2016) A comparison of the motions of surface drifters with offshore wind properties in the Gulf of Finland, the Baltic Sea. Estuarine, Coastal and Shelf Science 172, pp. 154–164.
- 10. Isobe, A., Kenta, K., Tamura, Y., Shinichio, K. & Natashima, E. (2014) Selective transport of microplastics and mesoplastics by drifting in coastal waters. Marine Pollution Bulletin 89, pp. 324–330.
- 11. Kasyk, L., Kijewska, M., Leyk-Wesołowska, M., Kowalewski, M., Pyrchla, J. & Pyrchla, K. (2016) Research into the movements of surface water masses in the basins adjacent to the port. Baltic Geodetic Congress (BGC Geomatics), pp. 191–196.
- 12. Manning, J.P., McGillicuddy Jr., D.J., Pettigrew, N.R., Churchill, J.H. & Incze, L.S. (2009) Drifter observations of the Gulf of Maine Coastal Current. Continental Shelf Research 29, pp. 835–845.
- 13. Olascoaga, M.J., Beron-Vera, F.J., Haller, G., Triñanes, J., Iskandarani, M., Coelho, E.F., Haus, B.K., Huntley, H.S., Jacobs, G., Kirwan Jr., A.D., Lipphardt Jr., B.L., Özgökmen, T.M., Reniers, A.J.H.M. & Valle-Levinson, A. (2013) Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophysical Research Letters 40, pp. 6171–6175.
- 14. Pyrchla, J., Kowalewski, M., Leyk-Wesołowska, M. & Pyrchla, K. (2016) Integration and visualization of the results of hydrodynamic models in the maritime network-centric GIS of Gulf of Gdańsk. Baltic Geodetic Congress (BGC Geomatics), pp. 159–164.
- 15. Pyrchla, K., Pyrchla, J., Kasyk, L., Kijewska, M. & Leyk-Wesołowska, M. (2017) Study of the Flow Dynamics of Surface Water Masses in the Area of the Coastal Gulf of Gdańsk. Baltic Geodetic Congress (BGC Geomatics), pp. 326–330.
- 16. Regulation (2018) Cabinet Regulation of 22 May 2018 regarding boundaries between the inland surface waters and the internal sea waters, and the territorial sea based on Article 28 of the Act of 20 July 2017 – the Water Law (Official Gazette item 1566 and 2180, and of 2018 item 650 and 710).
- 17. Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C., Torrisi, L., Pallela, D., Chiggiato, J., Tudor, M., Book, J.W., Martin, P., Peggion, G. & Rixen, M. (2009) Super-ensemble techniques: Application to surface drift prediction. Progress in Oceanography 82. pp. 149–167.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27f21f69-983b-49e4-b582-5827c84ca7a5