Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper describes a theory for surface Rayleigh waves propagating in a viscoelastic medium. The Zener model to describe the viscoelastic behavior of the medium is used. This simple model captures both the relaxation and retardation. An analytical expression for the complex dispersion equation of Rayleigh waves is established. The influence of the normalized frequency and the ratio of shear moduli on the dispersion curves of the Rayleigh wave velocity and attenuation is analyzed numerically. The numerical solutions show the dependence of the phase velocity change and the wave attenuation in terms of the normalized frequency and the ratio of shear moduli. As an important result, the Zener model can be used at a normalized low frequency to predict creep phenomenon as well as at a normalized high frequency to predict relaxation. The obtained results are fundamental and can be applied to characterize the viscoelastic properties of soft biomaterials and tissue, in nondestructive testing of materials, in geophysics and seismology. Thus, the obtained complex dispersion equation can be very useful to interpret the experimental measurements of Rayleigh waves propertie in a viscoelastic medium.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
207--223
Opis fizyczny
Bibliogr. 50 poz., wykr.
Twórcy
autor
- Arts et Metiers Institute of Technology, 2 boulevard du Ronceray, 49035 Angers, France
autor
- Arts et Metiers Institute of Technology, 2 boulevard du Ronceray, 49035 Angers, France
Bibliografia
- 1. C. Villa, M.A.J. Chaplain, A. Gerisch, T. Lorenzi, Mechanical models of pattern and form in biological tissues: the role of stress-strain constitutive equations, Bulletin of Mathematical Biology, 83, 80, 2021.
- 2. S.S. Poul, J. Ormachea, G.R. Ge, K.J. Parker, Comprehensive experimental assessments of rheological models performance in elastography of soft tissues, Acta Biomaterialia, 146, 259–273, 2022.
- 3. S. Catheline, J.L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, J. Culioli, Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach, The Journal of the Acoustical Society of America, 116, 3734, 2004.
- 4. A.P. Saravazyan, M.W. Urban, J.F. Greenleaf, Acoustic waves in medical imaging and diagnostics, Ultrasound in Medicine and Biology, 39, 1133–1146, 2013.
- 5. S. Kazemirad, Wave propagation for the experimental characterization of soft biomaterials and tissues, PhD Thesis, McGill University, 2014.
- 6. S. Kazemirad, H.K. Heris, L. Mongeau, Experimental methods for the characterization of the frequency-dependent viscoelastic properties of soft materials, The Journal of the Acoustical Society of America, 133, 3186–3197, 2013.
- 7. S. Kazemirad, L. Mongeau, Rayleigh wave propagation method for the characterization of a thin layer of biomaterials, The Journal of the Acoustical Society of America, 133, 4332–4342, 2013.
- 8. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley & Sons, 1980.
- 9. R.G. Larson, The structure and rheology of complex fluids, Oxford University Press, 1999.
- 10. J.D. Achenbach, C.C. Chao, A three-parameter viscoelastic model particularly suited for dynamic problems, Journal of the Mechanics and Physics of Solids, 10, 245–252, 1962.
- 11. S. Alonso, M. Radszuweit, H. Engel, M. Bar, Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids, Journal of Physics D: Applied Physics, 50, 434004, 2017.
- 12. K. J. Parker, T. Szabo, S. Holm, Towards a consensus on rheological models for elastography in soft tissues, Physics in Medecine and Biology, 64, 215012, 2019.
- 13. J. F. Greenleaf, M. Fatemi, M. Insana, Selected methods for imaging elastic properties of biological tissues, Annual Review of Biomedical Engineering, 5, 57–78, 2003.
- 14. A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, S.Y. Emelianov, Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics, Ultrasound in Medicine and Biology, 24, 1419–1435, 1998.
- 15. S. Kazemirad, S. Bernard, S. Hybois, A. Tang, G. Cloutier, Ultrasound shear wave viscoelastography: model-independent quantification of the complex shear modulus, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 1399–1408, 2016.
- 16. S. Chen, M. Fatemi, J.F. Greenleaf, Quantifying elasticity and viscosity from measurement of shear wave speed dispersion, The Journal of the Acoustical Society of America, 115, 2781, 2004.
- 17. S. Chen, M.W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, J.F. Greenleaf, Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity, IEEE Trans Ultrason Ferroelectr Freq Control, 56, 55–62, 2009.
- 18. I.Z. Nenadic, M.W. Urban, S. Aristizabal, S.A. Mitchell, T.C. Humphrey, J.F. Greenleaf, On Lamb and Rayleigh wave convergence in viscoelastic tissues, Physics in Medicine & Biology, 56, 6723–6738, 2011.
- 19. I.Z. Nenadic, M.W. Urban, S.A. Mitchell, J.F. Greenleaf, Lamb wave dispersion ultrasound vibrometry (LDUV) for quanification of mechanicao properties of viscoelastic solids, Physics in Medecine and Biology, 56, 2245–2264, 2011.
- 20. R.W.S. Chan, I.R. Titze, Viscosities of implantable biomaterials in vocal fold augmentation surgery, Laringoscope, 108, 725–731, 1998.
- 21. R.W.S. Chan, I.R. Titze, Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa, Laringoscope, 109, 1142–1149, 1999.
- 22. R.W.S. Chan, M.L. Rodrigez, A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies, The Journal of Acoustical Society of America, 124, 4332–4342, 1998.
- 23. I.R. Titze, S.A. Klemuk, S. Gray, Methodology for rheological testing of engineered biomaterials at low audio frequencies, The Journal of Acoustical Society of America, 115, 392–401, 2004.
- 24. J.L. Vanderhooft, M. Alcoutlabi, J.J. Magda, G.D. Prestwich, Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering, Macromolecular Bioscience, 9, 20–28, 2009.
- 25. J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.
- 26. E. Dieulesaint, D. Royer, Ondes élastiques dans les solides, Masson, Paris, 1974.
- 27. B.A. Auld, Acoustic fields and waves in solids, 1990.
- 28. L. Landau, E. Lifchitz, Théorie de l’élasticité, Mir, Moscou, 1990.
- 29. I. Kaur, P. Lata, Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion, International Journal of Mechanical and Materials Engineering, 14, 12, 2019.
- 30. P. Lata, Himanshi, Rotational and fractional effect on Rayleigh waves in an orthotropic magneto-thermoelastic media with hall current, Steel and Composite Structures, 42, 723–732, 2022.
- 31. P. Lata, S. Singh, Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer, GEM – International Journal on Geomathematics, 13, 5, 2022.
- 32. C. Pecorari, Modeling variations of Rayleigh wave velocity due to distributions of onedimensional surface-breaking cracks, The Journal of the Acoustical Society of America, 100, 1452–1550, 1996.
- 33. C. Pecorari, Attenuation and dispersion of Rayleigh waves propagating on a cracked surface: an effective field approach, Ultrasons, 38, 754–760, 2000.
- 34. M.D. Sharma, Rayleigh wave at the surface of a general anisotropic poroelastic medium: derivation of real secular equation, Proceedings of the Royal Society A, 474, 20170589, 2018.
- 35. K. Aki, P. Richards, Quantitative Seismology, Theory and Methods, Freeman, San Francisco, 1980.
- 36. K.S. Beaty, D.R. Schmitt, M. Sacchi, Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure, Geophysical Journal International, 151, 622–631, 2002.
- 37. J. Xia, E. Nyquist, Y. Xu, M.J.S. Roth, R.D. Miller, Feasibility of detecting near-surface feature with Rayleigh-wave diffraction, Journal of Applied Geophysics, 62, 244–253, 2007.
- 38. J. Xia, R.D. Miller, C.B. Park, Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave, Geophysics, 64, 691–700, 1999.
- 39. X.H. Campman, K. van Wijk, C.D. Riyanti, J. Scales, G.C. Herman, Imaging scattered seismic surface waves, Near Surface Geophysics, 2, 223–230, 2004.
- 40. P.K. Currie, M.A. Hayes, P.M. O’Leary, Viscoelastic Rayleigh waves, Quarterly of Applied Mathematics, 35, 35–53, 1977.
- 41. P.K. Currie, P.M. O’Leary, Viscoelastic Rayleigh waves II, Quarterly of Applied Mathematics, 35, 445–454, 1978.
- 42. P.K. Currie, Viscoelastic surface waves on a standard linear solid, Quarterly of Applied Mathematics, 37, 332–336, 1979.
- 43. J.M. Carcione, Rayleigh waves in isotropic viscoelastic media, Geophysical Journal International, 108, 453–464, 1992.
- 44. T.J. Royston, H.A. Mansy, R.H. Sandler, Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis, The Journal of the Acoustical Society of America, 106, 3678–3686, 1999.
- 45. T.J. Royston, Z. Dai, R. Chaunsali, Y. Liu, Y. Peng, R.L. Magin, Estimating material viscoelastic properties based on surface wave measurements: a comparison of techniques and modeling assumptions, The Journal of the Acoustical Society of America, 130, 4126–4138, 2011.
- 46. T. Alfrey, Mechanical Behavior of High Polymers, Interscience, New York, 1948.
- 47. E.J. Scott, Wave propagation in a visco-elastic medium, Quarterly of Applied Mathematics, 12, 300–306, 1954.
- 48. T. Alfrey, Mechanical Behavior of High Polymers – Overview and Historic Remarks, Springer, Boston, 1973.
- 49. A.F. Bower, Applied Mechanics of Solids, CRC Press, 2009.
- 50. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part II, McGraw-Hill, New York, 1946.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27f07796-c5dc-47b4-8041-1cf3bcc6246f