PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural Transition in SrZnO Laser Pulse Deposited Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have discovered a structural transition for the SrZnO alloy films from a wurtzite to a rock-salt structure, leading to a reduction in the (112̲0)/(0001) surface energy ratio. The films were grown by pulsed laser deposition using different SrO ratios, x. We have revealed that growth at a higher temperature, 750°C, resulted in a sharp 0002 peak at a low SrO content (5%), whereas growth at a higher SrO content (10%) resulted in a non-crystalline film with minute crystallites with a (112̲0) orientation. Generally the crystallinity decreased as the SrO content increased. No results obtained for the crystalline films showed any orientation of significant peaks besides the peak attributed to the (0001) plane, suggesting epitaxial growth. Optical measurements showed difference in transmission widows of alloys with different SrO percentage, and this was correlated to SrO influence on growth mode as indicated by scanning electron imaging. The studied SrZnO films, with SrO/(SrO + ZnO) ≤ 0.25, were grown by pulsed laser deposition using different SrO ratios, x. The effects of temperature and oxygen pressure during growth on the films’ structural properties were investigated. XRD results indicate that the film crystallinity was improved as the temperature and O2 pressure increased up to 650°C and 0.5 Torr, respectively.
Twórcy
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Saudi Arabia
  • King Abdullah Institute for Nanotechnology, King saud University, Riyadh, Saudi Arabia Saudi Arabia
  • National Center For Nanotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
autor
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Egypt
  • Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia Egypt
  • Physics Department, Faculty of Science, Ain Shams University, 11566 Abassia, Cairo, Egypt
autor
  • Czestochowa University of Technology, Institute of Electronic and Control System, 17 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Material Science Engineering, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
autor
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Saudi Arabia
  • Institut Des Materiaux Jean Rouxel (Imn – Université de Nantes, Umr Cnrs 6502), 2 Rue De La Houssiniere, Bp 92208, 44322 Nantes Cedex 3, France
autor
  • Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Saudi Arabia
  • King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
Bibliografia
  • [1] B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, Structure-dependent anisotropy of the photoinduced optical nonlinearity in calcium doped ZnO nanorods grown by low cost hydrothermal method for photonic device applications, J. Alloys Compd. 658, 435-439 (2016).
  • [2] L.N. Bai, J.S. Lian, W.T. Zheng, O. Jiang, First-principles study of optical properties in Ca-doped ZnO alloys, Eur. J. Phys. 10 (5), 1144-1149 (2012).
  • [3] D.J. Cohen, K.C. Ruthe, S.A. Barnett, Transparent conducting Zn1-xMgxO: (Al, In) thin films, J. Appl. Phys. 96 (1), 459-467 (2004).
  • [4] T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region, Appl. Phys. Lett. 84 (26) 5359-5361 (2004).
  • [5] T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Christen & M. Schreck, Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy, Appl. Phys. Lett. 83 (16), 3290-3292 (2003).
  • [6] H.A. Albrithen, A.M. El-Naggar, K. Ozga, H. Alshahrani, A. Alanazi, E. Alfaifi, J. Labis, et al., Giant increase of optical transparency for Zn-rich CaxZn1−xO on Al2O3 (0001) grown by pulsed laser deposition, Opt. Mater. 52, 1-5 (2016).
  • [7] D.W. Ma, Z.Z. Ye, L.L. Chen, Dependence of structural and optical properties of Zn1-xCdxO films on the Cd composition, Phys. Status Solidi A 201, 2929-2933 (2004).
  • [8] T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, et al., Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells, Appl. Phys. Lett. 77, 1632-1634 (2000).
  • [9] T. Makino, A. Ohtomo, C. Chia, Y. Segawa, H. Koinuma, M. Kawasaki, Internal electric field effect on luminescence properties of ZnO/(Mg, Zn)O quantum wells, Physica E 21, 671-675 (2004).
  • [10] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, et al., Band gap engineering based on MgxZn1-xO and Cdy Zn1-yO ternary alloy films, Appl. Phys. Lett. 78, 1237-1239 (2001).
  • [11] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Preparation of Zn1−x MgxO films by radio frequency magnetron sputtering, Thin Solid Films 372, 173-176 (2000).
  • [12] K.P. Misra, R.K. Shukla, A. Srivastava, A. Srivastava, Blue shift in optical band gap in nanocrystalline Zn1-xCaxO films deposited by sol-gel method. Appl Phys Lett 95, 031901 (2009)
  • [13] K. Ogata, K. Koike, T. Tanite, T. Komuro, F. Yan, S. Sasa, et al., ZnO and ZnMgO growth on a-plane sapphire by molecular beam epitaxy, J. Cryst. Growth 251, 623-627 (2003).
  • [14] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, et al., Mgx Zn1-xO as a II-VI wide gap semiconductor alloy, Appl. Phys. Lett. 72, 2466 (1998).
  • [15] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices, Appl. Phys. Lett 75, 980-982 (1999).
  • [16] A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto, H. Koinuma, Room- -temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices, Appl. Phys. Lett 77, 2204-2206 (2000).
  • [17] Y. Ryu, T.-S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, et al., Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes, Appl. Phys. Lett. 88 (24), 241108 (2006).
  • [18] Y.R. Ryu, T.S. Lee, J.A. Lubguban, A.B. Corman, H.W. White, J.H. Leem, et al., Wide-band gap oxide alloy: BeZnO, Appl. Phys. Lett. 88, 052103 (2006).
  • [19] K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, et al., Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy, J. Cryst. Growth 237-239, 514-517 (2002).
  • [20] F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, W.J. Lee, et al., Blue shift of near band edge emission in Mg doped ZnO thin films and aging, J. Appl. Phys. 95, 4772 (2004).
  • [21] H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells, J. Appl. Phys. 91, 1993-1997 (2002).
  • [22] O. Vigil, L. Vaillant, F. Cruz, G. Santana G, A. Morales-Acevedo, G. Contreras- Puente, Spray pyrolysis deposition of cadmium -zinc oxide thin films, Thin Solid Films 361, 53-55 (2000).
  • [23] Z.B. Ayadi, L. El Mir, J. El Ghoul, K. Djessas, S. Alaya, Structural and optical properties of calcium-doped zinc oxide sputtered from nanopowder target materials, Int. J. Nanoelectron. Mater. 3 (2), 87-97 (2010).
  • [24] W. Water, S.F. Wang, Y.P. Chen, JCh Pu, Calcium and strontium doped ZnO films for love wave sensor applications, Integr. Ferroelectr. 72 (1), 13-22 (2005).
  • [25] W. Water, Y.S. Yang, The influence of calcium doped ZnO films on Love wave sensor characteristics, Sens. Actuators A: Phys. 127, 360-365 (2006).
  • [26] P. Singh, Preparation and characterization of zinc-barium oxide composite, J. Mater. Sci. Lett. 9 (5), 613-615 (1990).
  • [27] K. Uematsu, T. Morimoto, Z. Kato, N. Uchida, K. Sa’to, Solubility of barium oxide in zinc oxide, J. Mater. Sci. Lett. 6 (11), 1285-1286 (1987).
  • [28] W. Water, T.H. Fang, L.W. Ji, T.H. Meen, Y.S. Yan, Surface morphology and liquid sensor sensitivity of barium-doped ZnO thin film, J. Sci. Innov. 1(1), 25-32 (2011).
  • [29] R. O’Hare, PhD thesis, Dublin City University, 2010.
  • [30] Y. Duan, L. Qin, G. Tang, L. Shi, First-principles study of groundand metastable-state properties of XO (X=Be, Mg, Ca, Sr, Ba, Zn and Cd), Eur. Phys. J. B. 66, 201-209 (2008).
  • [31] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films, Appl. Phys. Lett. 80, 1529-1531 (2002).
  • [32] I.V. Kityk, J. Ebothe, A. El Hichou, Pressure-temperature anomalies of doped ZnO polycrystalline films deposited on bare glasses, Mater. Lett. 51 (6), 519-524 (2001).
  • [33] I.V. Kityk, J. Ebothe, A. El Hichou, M. Addou, A. Bougrine, B. Sahraoui, Linear electro-optics effect in ZnO-F film-glass interface, Phys. Status Solidi B 234, 553-562 (2002).
  • [34] T.M. Williams, D. Hunter, A.K. Pradhan, I.V. Kityk, Photoinduced piezo-optical effect in Er doped ZnO films, Appl. Phys. Lett. 89, 043116 (2006).
  • [35] J. Ebothe, I.V. Kityk, S. Benet, B. Claudet, K.J. Plucinski, K. Ozga, Photoinduced effects in ZnO films deposited on MgO substrates, Opt. Commun. 268, 269-272 (2006).
  • [36] K. Ozga, T. Kawaharamura, A. Ali Umar, M. Oyama, K. Nouneh, A. Slezak, S. Fujita, et al., Second-order optical effects in Au nanoparticle- deposited ZnO nanocrystallite films, Nanotechnology 19, 185709 (2008).
  • [37] G. Lakshminarayana, J. Qiu, M.G. Brik, G.A. Kumar, I.V. Kityk, Spectral analysis of Er3+, Er3+/Yb3+- and Er3+/Tm3+/Yb3+ doped TeO2-ZnO-WO3-TiO2-Na2O glasses, J. Phys.- Condens. Mat. 20, 375101 (2008).
  • [38] A. Douayar, M. Abd-Lefdil, K. Nouneh, P. Prieto, R. Diaz, A.O. Fedorchuk, I.V. Kityk, Photoinduced pockels effect in the Nd-doped ZnO oriented nanofilms, Appl. Phys. B 110(3), 419-423 (2013).
  • [39] B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, Structure-dependent anisotropy of the photoinduced optical nonlinearity in calcium doped ZnO nanorods grown by low cost hydrothermal method for photonic device applications, J. Alloys Compd. 658, 435-439 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27edcdfc-96ad-48fd-81d1-8ef1a8f9b5bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.