PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena wytrzymałości połączeń zgrzewanych oporowo z blach tytanowych GR 3 i GR4

Identyfikatory
Warianty tytułu
EN
Strength evaluation of resistance spot welding (RSW) joints made of titanium GR3 i GR4 sheets
Języki publikacji
PL
Abstrakty
PL
Celem artykułu była ocena wytrzymałości złączy wykonanych z blach z tytanu grade 3 i grade 4 o grubości 0,4 mm. Blachy łączono w sposób zakładkowy przez zgrzewanie oporowe. Złącza zgrzano pojedynczą zgrzeiną RSW. Dokonano wyboru optymalnych parametrów zgrzewania. Ocenie poddano złącza wykonane za pomocą 5 kombinacji parametrów zgrzewania, różniących się czasem zgrzewania i natężeniem prądu elektrycznego. Analizowano nośności na ścinanie złączy, rozkład odkształceń plastycznych i sposób pękania. Pomiaru odkształceń plastycznych dokonano przy użyciu bezkontaktowego systemu analizy optycznej Aramis.
EN
Titanium and have been identified as one of the best engineering metals for application in many industrial fields such as aviation, automotive and civil engineering. This is because of properties of the material: low density and high mechanical strength. Titanium also is characterised by excellent corrosion resistance to many environments. In recent years, researchers have attached great importance to the application of titanium in resistance spot welding (RSW). In resistance spot welding, two metal sheets are placed between two copper electrodes. The purpose of the two electrodes is to supply current to the weld sheets. The production of RSW welds is finished via solidification. The paper presents a strength evaluation of welded specimens made of titanium grade 3 and grade 4 of 0.4 mm thickness. The lap joins were made by Resistance Spot Welding (RSW). The joints were welded by the single RSW weld. The optimal welding parameters were chosen. The joints welded by 5 variants of welding parameters, different of welding time and electric current. The shear load capacity, a plastic strains distribution and a method of cracking were assessed. The Plastic strains measurement was made using a non-contact optical deformation system Aramis.
Słowa kluczowe
Rocznik
Strony
603--609
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Politechnika Częstochowska, Wydział Budownictwa, Częstochowa
autor
  • Politechnika Częstochowska, Wydział Budownictwa, Częstochowa
autor
  • CHIRMED, Rudniki k/Częstochowy
Bibliografia
  • 1. Atasoy E., Kahraman N.: Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Materials Characterization 2008, vol. 59, no. 10, pp. 1481÷1490.
  • 2. Cui C ., H u B ., Z hao L ., Liu S .: Titanium alloy production technology, market prospects and industry development. Materials & Design 2011, vol. 32, no. 3, pp. 1684÷1691.
  • 3. Adamus J.: Applications of Titanium Sheets in Modern Building Construction. AMR 2014, vol. 1020, pp. 9÷14.
  • 4. Adamus K., Kucharczyk Z., Wojsyk K., Kudla K.: Numerical analysis of electron beam welding of different grade titanium sheets. Computational Materials Science 2013, vol. 77, pp. 286÷294.
  • 5. Adamus J., Motyka M.: Analysis of Tensile Test of Titanium EBW Sheet. KEM 2015, vol. 639, pp. 339÷346.
  • 6. Lacki P., Adamus K.: Numerical Simulation of Welding Thin Titanium Sheets. KEM 2013, vol. 549, pp. 407÷414.
  • 7. Adamus J., Lacki P.: Analysis of forming titanium welded blanks. Computational Materials Science 2014, vol. 94, pp. 66÷72.
  • 8. Lacki P., Adamus J., Wieckowski W., Winowiecka J.: Evaluation of Drawability of Titanium Welded Sheets / Ocena Tłocznosci Spawanych Blach Tytanowych. Archives of Metallurgy and Materials 2013, vol. 58, no. 1.
  • 9. Winowiecka J., Więckowski W., Zawadzki M.: Evaluation of drawability of tailor-welded blanks made of titanium alloys Grade 2 || Grade 5. Computational Materials Science 2013, vol. 77, pp. 108÷113.
  • 10. Adamus J., Lacki P., Motyka M.: EBW titanium sheets as material for drawn parts. Archives of Civil and Mechanical Engineering 2015, vol. 15, no. 1, pp. 42÷47.
  • 11. Wan X., Wang Y., Zhang P.: Modelling the effect of welding current on resistance spot welding of DP600 steel. Journal of Materials Processing Technology 2014, vol. 214, no. 11, pp. 2723÷2729.
  • 12. Zhang H., Wang F., Xi T., Zhao J., Wang L., Gao W.: A novel quality evaluation method for resistance spot welding based on the electrode displacement signal and the Chernoff faces technique. Mechanical Systems and Signal Processing 2015, vol. 62-63, pp. 431÷443.
  • 13. Wei P. S., Wu T. H.: Electrode geometry effects on microstructure determined by heat transfer and solidification rate during resistance spot welding. International Journal of Heat and Mass Transfer 2014, vol. 79, pp. 408÷416.
  • 14. Wei P. S., Wu T. H.: Workpiece property effects on nugget microstructure determined by heat transfer and solidification rate during resistance spot welding. International Journal of Thermal Sciences 2014, vol. 86, pp. 421÷429.
  • 15. Hayat F.: Effect of aging treatment on the microstructure and mechanical properties of the similar and dissimilar 6061- -T6/7075-T651 RSW joints. Mater. Sci. Eng., A 2012, vol. 556, pp. 834÷843.
  • 16. Spena P. R., M addis M . d e, L ombardi F .: Mechanical Strength and Fracture of Resistance Spot Welded Advanced High Strength Steels. Procedia Eng. 2015, vol. 109, no. 12, pp. 450÷456.
  • 17. Wang J., Wang H.-P., Lu F., Carlson B. E., Sigler D. R.: Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model. International Journal of Heat and Mass Transfer 2015, vol. 89, pp. 1061÷1072.
  • 18. Kaya Y., Kahraman N.: The effects of electrode force, welding current and welding time on the resistance spot weldability of pure titanium. Int J Adv Manuf Technol 2012, vol. 60, pp. 127÷134.
  • 19. Kahraman N.: The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets. Materials & Design 2007, vol. 28, no. 2, pp. 420÷427.
  • 20. Zhao D., Wang Y., Sheng S., Lin Z.: Real time monitoring weld quality of small scale resistance spot welding for titanium alloy. Measurement 2013, vol. 46, no. 6, pp. 1957÷1963.
  • 21. Wan X., Wang Y., Zhao D.: Multi-response optimization in small scale resistance spot welding of titanium alloy by principal component analysis and genetic algorithm. Int J Adv Manuf Technol 2015.
  • 22. Qiu R., Higuchi K., Satonaka S., Iwamoto C.: Characterization of joint between titanium and aluminum alloy welded by resistance spot welding with cover plate. Quart J Jpn Weld Soc 2009, vol. 27, no. 2, pp. 109÷113.
  • 23. Li Y., Zhang Y., Bi J., Luo Z.: Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding. MATER DESIGN 2015, vol. 83, pp. 577÷586.
  • 24. http://www.suggestkeyword.com/ZnVrdW9rYSBkb21l/.
  • 25. http://www.6-kou.com/accomplishments/ECF/.
  • 26. http://www.bryla.pl/bryla/51,85298,7946445.html?i=2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27eb0308-b7cd-49ef-9f41-e96757a6a521
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.