PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of metrological properties fiber Bragg gratings with a constant and variable period

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza właściwości metrologicznych siatek Bragga ze stałym i zmiennym okresem
Języki publikacji
EN
Abstrakty
EN
The paper presents periodic structures in terms of metrological properties in the distinction for a fiber Bragg grating (FBG) with a constant and changeable period. The process of their formation and characteristics as well as applications in many areas have been described. On the basis of the literature, the results of research and measurements of measurable quantities such as temperature and stress made by periodic structures applied to the fiber of the optical fiber are presented. Analysis of the presented measurements allowed to mark the ranges and accuracy of measurements of individual applications.
PL
W pracy przedstawiono struktury periodyczne pod kątem własności metrologicznych w rozróżnieniu na światłowodowe siatki Bragga (FBG – ang.: Fiber Bragg Grating) o stałym i zmiennym okresie. Opisano proces ich powstawania oraz cechy charakterystyczne jak i zastosowania w wielu dziedzinach. W oparciu o literaturę zaprezentowano wyniki badań i pomiarów takich wielkości mierzalnych jak temperatura i naprężenie dokonywanych strukturami periodycznymi naniesionymi na włókno światłowodu. Analiza zaprezentowanych pomiarów pozwoliła nakreślić zakresy oraz dokładności pomiarów poszczególnych aplikacji.
Rocznik
Strony
62--67
Opis fizyczny
Bibliogr. 48 poz., rys., tab
Twórcy
  • Lublin University of Technology, Institute of Electronics and Information Technology
autor
  • Lublin University of Technology, Institute of Electronics and Information Technology
Bibliografia
  • [1] Albert J., Hill K.O., Malo B., Theriault S., Bilodeau F., Erickson L.E.: Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency. Electron. Lett. 31, 1995, 222–223.
  • [2] Anderson D.Z., Mizrahi V., Erdogan T., White A. E.: Production of in-fiber gratings using a diffractive optical element. Electron. Lett. 29, 1993, 566–568.
  • [3] Azaña J., Chen L.R., Muriel M.A., Smith P.W.E.: Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings. Electron. Lett. 35(25), 1999, 2223–2224.
  • [4] Barbarin Y.: Dynamic measurements of physical quantities in extreme environment using fiber Bragg grating. 27th Optical Fiber Sensors Conference (OFS), IEEE, 2017, 1–4.
  • [5] Canning J.:Fibre gratings and devices for sensors and lasers. Laser & Photonics Reviews 2(4), 2008, 275–289.
  • [6] Deepa S., Bhargab D.: Pico-strain-level dynamic perturbation measurement using ᴨFBG sensor. arXiv preprint arXiv:1710.04206, 2017.
  • [7] Dziuda Ł., Krej M., Lewandowski J., Różanowski K., Skibniewski F.: Światłowodowy czujnik czynności oddechowej i rytmu serca. Polski Przegląd Medycyny i Psychologii Lotniczej 3(17), 2011.
  • [8] Eggleton B.J., Nielsen T.N., Rogers J.A., Westbrook P.S., Strasser T.A., Hansen P.B., Dreyer K.F.: Dispersion compensation in 20 Gbit/s dynamic nonlinear lightwave systems using electrically tunable chirped fiber grating. Electron. Lett. 35, 1999, 832–833.
  • [9] Eggleton B.J., Rogers J.A., Westbrook P.S., Strasser T.A.: Electrically tunable power efficient dispersion compensating fiber Bragg grating. IEEE Photonics Technology Letters 11(7), 1999, 854–856.
  • [10] Fernandez A.F., Berghmans F., Brichard B., Mégret P., Decréton M., Blondel M., Delchambre A.: Multi-component force sensor based on multiplexed fibre Bragg grating strain sensors. Meas. Sci. Technol. 12(7), 2001, 810.
  • [11] Garrett L.D., Gnauck A.H., Forgherieri, Scarano D.: 8 X 20 Gb/s–315 km–480 km WDM transmission over conventional fiber using multiple broadband fiber gratings. Tech. Digest of Conf. On Opt. Fiber Commun. OFC '98, Post-Deadline paper, PD18, 1998, 1–4.
  • [12] Hill P.C., Eggelton B.J.: Strain gradient chirp of fibre Bragg gratings. Electronics Letters 30(14), 1994, 1172–1174.
  • [13] Hill K.O., Bilodeau F., Malo B., Kitagawa T., Thériault S., Johnson D. C., Albert J., Takiguchi K.:Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett. 19(17), 1994, 1314–1316.
  • [14] Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S.: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 1978, 647–649.
  • [15] Hill K.O., Malo B., Bilodeau F., Johnson D.C., Albert J.: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62, 1993, 1035–1037.
  • [16] Hill K.O., Meltz G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1997, 1263–1275.
  • [17] Ikhlef A.: Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method. International Journal of Computer Science Issues 9(1), 2012, 368–374.
  • [18] James S.W., Dockney M.L., Tatam R.P.: Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electronics Letters 32(12), 1996, 1133–1134.
  • [19] Kalli K., Simpson G., Dobb H., Komodromos M., Webb D., Bennion I.: Annealing and temperature coefficient study of type IA fibre Bragg gratings inscribed under strain and no strain-implications to optical fibre component reliability. Proc. SPIE 6193, 2006.
  • [20] Kashyap R.: Fiber Bragg Gratings. New York, Academic, 1999.
  • [21] Kisała P., Klimek J., Skorupski K.: W pełni optyczny przełącznik wykorzystujący jednorodne światłowodowe siatki Bragga. Przegląd Elektrotechniczny 91(11), 2015, 266–270.
  • [22] Kisała P., Cięszczyk S.: Method of simultaneous measurement of two direction force and temperature using fbg sensor head. Appl. Opt. 54, 2015, 2677–2687.
  • [23] Kisała P.: Generation of a zone chirp in uniform Bragg grating as a way of obtaining double functionality of a sensor. Metrology and Measurement Systems 4, 2012, 727–738.
  • [24] Kisała P.: Method of simultaneous measurement of bending forces and temperature using Bragg gratings. Proc. SPIE 9506, Optical Sensors, 2015.
  • [25] Kisała P.: Optoelectronic sensor for simultaneous and independent temperature and elongation measurement using Bragg gratings. Przegląd Elektrotechniczny 11a, 2012, 343–346.
  • [26] Kisała P.: Periodyczne struktury światłowodowe w optoelektronicznych czujnikach do pomiaru wybranych wielkości nieelektrycznych. Politechnika Lubelska, 2012.
  • [27] Laming R.I., Ibsen M., Durkin M., Cole M.J., Zervas M.N., Ennser K.E., Gusmeroli V.: Dispersion compensation gratings. Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides, Applications and Fundamentals. OSA Technical Digest Series (Optical Society of America, Washington, DC) 17, Paper BTuA7, 1997, 271–273.
  • [28] Lazaro J.M., Quintela A., Tarnowski K., Wojcik J., Urbanczyk W., LopezHiguera J.M.: Experimental characterization of the spectral effective index dependence of index-guided photonic crystal fibers. Meas. Sci. Technol. 21, Paper 055111, 2010.
  • [29] Li Y., Yang M., Wang D.N., Lu J., Sun T., Grattan, K.T.: Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Optics express 17(22), 2009, 19785–19790.
  • [30] Liao C., Li Y., Wan, D.N., Sun T., Grattan K.T.V.: Morphology and Thermal Stability of Fiber Bragg Gratings for Sensor Applications Written in -Free and -Loaded Fibers by Femtosecond Laser. IEEE Sensors Journal 10(11), 2010, 1675–1681.
  • [31] Lima H.F., Antunes P.F., de Lemos Pinto J., Nogueira R.N.: Simultaneous measurement of strain and temperature with a single fiber Bragg grating written in a tapered optical fiber. IEEE Sensors Journal 10(2), 2010, 269–273.
  • [32] Liu Y., Williams J.A.R., Zhang L., Bennion, I.: Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers. Optics letters 27(8), 2002, 586–588.
  • [33] Loh W.H., Laming R.I., Robinson N., Cavaciuti A., Vaninetti, Anderson C.J., Zervas M.N., Cole M.J.: Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings. IEEE Photon. Technol. Lett. 8, 1996, 944.
  • [34] Maheshwari M., Tjin S.C., Yang Y., Asundi A.: Wavelength-shifted chirped FBGs for temperature compensated strain measurement. Sensors and Actuators A: Physical. 2017.
  • [35] Majumder M., Gangopadhyay T.K., Chakraborty A.K., Dasgupta K., Bhattacharya D.K.: Fiber Bragg gratings in structural health monitoring–prezent status and applications. Sensors and Actuators 147, 2008, 150–164.
  • [36] Malo B., Hill K.O., Bilodeau, F., Johnson D.C., Albert J.: Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive-index modification techniques. Electron. Lett. 29, 1993, 1668–1669.
  • [37] Malo B., Theriault S., Johnson D.C., Bilodeau F., Albert J., Hill K.O.: Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask. Electron. Lett. 31, 1995, 223–224.
  • [38] Martinez A., Khrushchev I.Y., Bennion I.: Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett. 41, 2005, 176–178.
  • [39] Meltz G., Morey W.W., Glenn W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 1989, 823–825.
  • [40] Ouellette F., Krug P.A., Stephens T., Dhosi G., Eggleton B.J.: Dispersion compensation using chirped sampled fibre Bragg gratings. Electronics Lett. 31, 1995, 899–901.
  • [41] Prakash O., Kumar J., Mahakud R., Agrawal S.K., Dixit S.K., Nakhe S.V.: Enhanced Temperature (~800°C) Stability of Type-IIa FBG Written by 255 nm Beam. IEEE Photonics Technology Letters 26(1), 2014, 93–95.
  • [42] Putnam M.A., Williams G.M., Friebele E.J.: Fabrication of tapered, straingradient chirped fibre Bragg gratings. Electronics Letters 31.4, 1995, 309–310.
  • [43] Shi Ch.X.: Optical Bistability in Reflective Fiber Gratings. IEEE Journal of Quantum Electronics 31, 1995, 2037–2043.
  • [44] Takubo Y., Yamashita S.: High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Optics express 21(4), 2013, 5130–5139.
  • [45] Tanaka N., Okabe Y., Takeda N.: Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates. Smart materials and structures 12(6), 2003, 940.
  • [46] Williams R.J., Voigtländerv C., Marshall G.D., Tünnermann A., Nolte S., Steel M.J., Withford M.J.: Pointby-point inscription of apodized fiber Bragg gratings. Opt. Lett. 36(15), 2011, 2988–2990.
  • [47] Yoffe G.W., Krug P.A., Ouellette F., Thorncraft D.A.: Passive temperaturecompensating package for optical fiber gratings. Applied Optics 34(30), 1995, 6859–6861.
  • [48] Zhu HH., Yin JH., Zhang L., Jin W., Dong JH.: Monitoring internal displacements of a model dam using FBG sensing bars. Advances in Structural Engineering 13(2), 2010, 249–262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27e8c13b-4dc7-4e60-85ea-907c4fe32d88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.