PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the laser welding process

Autorzy
Identyfikatory
Warianty tytułu
PL
Analiza procesu spawania laserowego
Języki publikacji
EN PL
Abstrakty
EN
The article discusses the basics of key-hole welding, melt-in welding, hybrid laser welding (laser + GMA) and laser welding with filler metal feeding as well as presents laser welding process applications in various industries. In addition, the article discusses advantages and disadvantages of laser welding as well as presents typical laser welding-related imperfections and possibilities of the real-time monitoring of laser welding process quality.
PL
Opisano podstawy spawania laserowego techniką z oczkiem spoiny i techniką z jeziorkiem metalu spoiny oraz techniką spawania laserowego hybrydowego i z podawaniem materiału dodatkowego oraz zakresy zastosowań przemysłowych. Przeprowadzono analizę zalet i wad procesu spawania laserowego oraz opisano podstawowe wady złączy i możliwości monitorowania jakości spawania laserowego w czasie rzeczywistym.
Rocznik
Strony
33--43
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Katedra Spawalnictwa – Politechnika Śląska /Department of Welding; Silesian University of Technology/
Bibliografia
  • [1] Klimpel A.: Technologie laserowe. Podręcznik akademicki. Wydawnictwo Politechniki Śląskiej, Gliwice, 2012.
  • [2] Svenungsson J. et al.: Laser welding process – a review of keyhole welding modelling. Physics Procedia, 2015, no. 78, pp. 182 – 191. https://www.sciencedirect.com/science/ article/pii/S1875389215015321?via%3Dihub
  • [3] You D. Y., Gao X. D., Katayama S.: Review of Laser Welding Monitoring. Science and Technology of Welding and Joining, 2014, vol. 19, no. 4, pp. 1–22. https://www.tandfonline.com/doi/full/10.11 79/1362171813Y.0000000180
  • [4] Eriksson I., Kaplan A. F. H.: Evaluation of laser weld monitoring –a case study. Proc. Conf. ICALEO 2009, Orlando, FL, USA, 2009, Laser Institute of America, pp. 1419–1425.
  • [5] Huang L. et al.: Role of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloy. The International Journal of Advanced Manufacturing Technology, 2019, no. 103, pp. 913–925. https://doi.org/10.1007/s00170- 019-03502-x. https://link.springer.com/ article/10.1007%2Fs00170-019-03502-x
  • [6] Alam M. M.: A study of the fatigue behaviour of laser and hybrid laser welds. Licentiate Thesis. Lulea University of Technology, Lulea, 2009.
  • [7] Chen X. L. et al.: Effects of grain size and precipitation on liquation cracking of AZ61 magnesium alloy laser welding joints. Science and Technology of Welding and Joining, 2013, vol. 18, no. 6, pp. 458–465. https://www.tandfonline.com/doi/full/10.11 79/1362171813Y.0000000117
  • [8] Cui L. et al.: Study on microtexture of laser welded 5A90 aluminium–lithium alloys using electron backscattered diffraction. Science and Technology of Welding and Joining, 2013, vol. 18, no. 3, pp. 204– 209. https://www.tandfonline.com/doi/full/10.11 79/1362171812Y.0000000092
  • [9] Avilov V. V. et al.: PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Science and Technology of Welding and Joining, 2012, vol. 17, no. 2, pp. 128–133. https://www.tandfonline.com/doi/full/10.11 79/1362171811Y.0000000085
  • [10] Kawahito Y., Mizutani M., Katayama S.: High quality welding of stainless steel with 10 kW high power fibre laser. Science and Technology of Welding and Joining, 2009, vol. 14, no. 4, pp. 288–294. https://www.tandfonline.com/doi/ abs/10.1179/136217108X372531
  • [11] Meng W. et al.: The influence of various factors on the geometric profile of laser lap welded T-joints. International Journal of Advanced Manufacturing Technology, 2014, vol. 74, no. 9–12, pp. 1625–1636. https://link.springer.com/article/10.1007%2Fs00170-014-6114-y
  • [12] Katayama S. et al.: Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Physics Procedia, 2010, vol. 5, pp. 9–17; doi:10.1016/j.phpro.2010.08.024. https://www.sciencedirect.com/science/article/pii/ S1875389210004505?via%3Dihub
  • [13] Frostevarg J.: Factors affecting weld root morphology in laser keyhole welding. Optics and Lasers in Engineering, 2018, vol. 101, pp. 89–98. https://www.sciencedi¬rect.com/science/article/pii/ S0143816617305432?via%3Dihub
  • [14] Stavridis J. et al.: Quality assessment in laser welding: a critical review. Journal of Advanced Manufacturing Technology, 2018, vol. 94, pp. 1825–1847.
  • [15] Norman P., Engström H., Kaplan A. F. H.: State-of-the-art of monitoring and imaging of laser welding defects. Project DAT¬LAS, no. 27744-2, project HYBRIGHT, no. 27382-2, and project LOST, no. 2006-00563. http://citeseerx.ist.psu.edu/viewdoc/down¬load?doi=10.1.1.469.9918&rep=rep1&-type=pdf
  • [16] Rodil S. S. et al.: Laser welding defects detection in automotive industry based on radiation and spectroscopical measurements. International Journal of Advanced Manufacturing Technology, 2010, vol. 49, pp. 133–145. https://link.springer.com/ article/10.1007%2Fs00170-009-2395-y
  • [17] Norman P., Karlsson J., Kaplan A. F. H: Monitoring undercut, blowouts and root sagging during laser beam welding. Proceedings of the Fifth International WLT-Conference on Lasers in Manufacturing, Munich, Germany, 2009, 1–5.
  • [18] Geiger M., Kageler C., Schmidt M.: High-power laser welding of contaminated steel sheets. Production Engineering, 2008, vol. 2, pp. 235–240. https://link.springer.com/ article/10.1007%2Fs11740-008-0109-1
  • [19] Elefante A. et al.: Detecting beam offsets in laser welding of closed-square-butt joints by wavelet analysis of an optical process signal. Optics and Laser Technology, 2019, vol. 109, pp. 178–185. https://www.sciencedirect.com/science/ article/pii/S0030399218302378?via%3Dihub
  • [20] Luo H. et al.: Application of artificial neural network in laser welding defect diagnosis. Journal of Materials Processing Technology, 2005, vol. 170, pp. 403–411. https://www.sciencedirect.com/science/ article/pii/S0924013605005741?via%3Dihub
  • [21] Gao X. et al.: Analysis of characteristics of spatters during high-power disk laser welding. Acta Physica Sinica, 2012, vol. 61.
  • [22] D’Angelo G.: Studying the quality of laser welding process using time-frequen-cy distributions with rotated kernel. Proc. Conf. ICALEO 2008, Temecula, USA, 2008, Laser Institute of America, pp. 807– 813. https://lia.scitation.org/doi/ abs/10.2351/1.5061266
  • [23] Liu L. M., Yuan S. T., Li C. B.: Effect of relative location of laser beam and TIG arc in different hybrid welding modes. Science and Technology of Welding and Joining, 2012, vol. 17, pp. 441–446. https://www.tandfonline.com/ doi/abs/10.1179/136217181 2Y.0000000033?journalCode=ystw20
  • [24] You D., Gao X., Katayama S.: Multiple-optics sensing of high-brightness disk laser welding process, NDT & E International, 2013, vol. 60, pp. 32–39. https://www.sciencedi¬rect.com/science/article/pii/ S0963869513001060?via%3Dihub
Uwagi
1. Wersja polska artykułu w wydaniu papierowym s. 49-57.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27e80785-b2c6-49a8-91b5-9b1cb588bb4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.