PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent Challenges of Biogas Production and its Conversion to Electrical Energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A pressing concern of issues such as climate change has drawn main attention in the world. The burning of fossil fuels by human due to increasing energy demand in various sectors is one of the main factors that influence the climate change. This has resulted in the introduction of many renewable energy sources as alternatives to fossil fuels. Biogas is one type of renewable energy that has numerous advantages. The present review covers the recent challenges of biogas production and its conversion to electrical energy. This includes the substrates used, the operating parameters, and the pre-treatment used, which can be implemented to maximise the biogas yield. The challenges and potential of the generation of electricity from biogas were also discussed in this review. The results obtained in this review emphasise that biogas is a good renewable energy, as it solves multiple problems and at the same brings benefits to human beings in many ways.
Słowa kluczowe
Rocznik
Strony
251--269
Opis fizyczny
Bibliogr. 124 poz., rys., tab.
Twórcy
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Pusat Penyelidikan Tasik Chini, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Abebe M.A. 2017. Characterisation peal of fruit and leaf of vegetable waste with cow dung for maximizing the biogas yield. International Journal of Energy and Power Engineering, 6(2), 13–21.
  • 2. Abu Bakar S.N.H., Abu Hasan H., Mohammad A.W., Abdullah S.R.S., Haan T.Y., Ngteni R., Yusof R.M.M. 2018. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. Journal of Cleaner Production, 171, 1532–1545.
  • 3. Achinas S., Achinas V., Euverink G.J.W. 2017. A technological overview of biogas production from biowaste. Engineering, 3, 299–307
  • 4. Ahamad S., Mat Tahar R. 2014.Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458–466.
  • 5. Ahmad A., Ghufran R., AbdWahid Z. 2011. Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Reviews in Environmental Science and Bio/Technology, 10, 353–376.
  • 6. Ahmad S.S., Yap C., Mokhtar S., Mali Z., Mansor S., Abd Rahim M.S.A. 2017. Forming fortified future. Energy Malaysia, 12, 10–13.
  • 7. Ahmed Y., Yaakob Z., Akhtar P., Sopian K. 2015. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renewable and Sustainable Energy Reviews, 42, 1260–1278.
  • 8. Akinyele D., Olabode E., Amole A. 2020. Review of fuel cell technologies and applications for sustainable microgrid system. Inventions, 42, 1–35.
  • 9. Al Mamun M.R., Torii S. 2015. Production of biomethane from cafeteria, vegetable and fruit wastes by anaerobic co-digestion process. Journal of Clean Energy Technologies, 3(5), 321–325.
  • 10. Alam M.Z., Abdul Hamid N. 2017. Development of Indigenous biofilm for enhanced biogas production from palm oil mill effluent. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 39(1), 1–8.
  • 11. Alepu O.E., Li Z., Ikhumhen H.O., Kalakodio L., Wang K., Segun G.A. 2016. Effect of hydraulic retention time on anaerobic digestion of Xiao Jiahe municipal sludge. International Journal of Waste Resources, 6(3), 1–5.
  • 12. Alexander S., Harris P., McCabe B.K. 2019. Biogas in the suburbs: An untapped source of clean energy? Journal of Cleaner Production, 215, 1025–1035.
  • 13. Ali S.S, Sun J. 2015. Physico-chemical pretreatment and fungal biotreatment for park wastes and cattle dung for biogas production. SpringerPlus, 4(712), 1–14.
  • 14. Alias M.S., Kamarudin S.K., Zainoodin A.M., Masdar M.S. 2020. Active direct methanol fuel cell: An overview. International Journal of Hydrogen Energy, 45, 19620–19641.
  • 15. Anderson K., Sallis P., Uyanik S. 2003. Anaerobik treatment process. Academic Press, Cambridge
  • 16. Anukam A., Mohammadi A., Naqvi M., Karin Granström. 2019. A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes, 7(504), 1–19.
  • 17. Arij Y., Fatihah S., Rakmi A.R. 2018. Performance of pilot scale anaerobic biofilm digester (ABD) for the treatment of leachate from a municipal waste transfer station. Bioresource Technology, 260, 213–220.
  • 18. Armah E.K., Tetteh E.K., Boamah B.B. 2017. Overview of biogas production from different feedstocks. International Journal of Scientific and Research Publications, 7(12), 158–1.
  • 19. Asante-Sackey D., Tetteh EK. Nkosi N., Boakye G.O., Absah Amano KO., Boamah BB., Armah E.K. 2018. Effects of inoculum to feedstock ratio on anaerobic digestion for biogas production. International Journal of Hydrology, 2(5), 567–571.
  • 20. Atelge M.R., Krisa D., Kumar G., Eskicioglu C., Nguyen D.D., Chang S.W.,AtabaniA.E,Al-Muhtaseb Alaa H., Umalan S. 2018. Biogas production from organic waste: recent progress and perspectives. Waste and Biomass Valorization, 11, 1019–1040.
  • 21. Berni M., Dorileo I. Nathia G., Foster-Carneiro T., Lachos D., Santos B.G.M. 2016. Anaerobic digestion and biogas production: combine effluent treatment with energy generation in uasb reactor as biorefinery annex. International Journal of Chemical Engineering, 2014, 1–8.
  • 22. Bharathiraja B., Sudharsana T., Jayamuthunagai J., Praveenkumar R., Chozhavendhan. 2018. Biogas production – a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews, 90, 570–582.
  • 23. Bhattacharya J., Dev S., Das B. 2018. Design of water bioremediation plant and system. Elsevier Science, United States.
  • 24. Bochmann G., Montgomery L.F.R. 2013. Storage and pre-treatment of substrates for biogas production. Woodhead Publishing, United Kingdom.
  • 25. Boukhanouf R. 2011. Small combined heat and power (CHP) systems for commercial buildings and institutions. in Beith, R. Small and Micro Combined Heat and Power (CHP) System. Cornwall, Woodland Publications.
  • 26. Bremond U., de Buyer R, Jean-Philippe S., Bernet N., Carrere H. 2018. Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renewable and Sustainable Energy Reviews, 90, 583–604.
  • 27. Budiyono, Manthia F., Amalin N., Hawali H., Abdul Matin, Sumardiono S. 2018. Production of biogas from organic fruit waste in anaerobic digester using ruminant as the inoculums. MATEC Web of Conferences, 1–5.
  • 28. Cater M., Zorec M., Logar R.M. 2014. Methods for Improving Anaerobic Lignocellulosic Substrates Degradation for Enhanced Biogas Production. Springer Science Reviews, 2(2014), 55–61.
  • 29. CCAP. 2013. Combined Heat and Power for Industrial Revitalization. Washington. Center for Clean Air Policy.
  • 30. Chiu S.L.H., Lo I.M.C. 2016. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environmental Science and Pollution Research, 23, 24435-24450.
  • 31. Christy P.M., Gopinath L.R., Divya D. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173.
  • 32. Daud M.K., Rizvi H., Akram M.F., Ali S., Rizwan M., Nafees M., Jin, Z.S. 2018. Review of upflow anaerobic sludge blanket reactor technology: effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, 2018, 1–13.
  • 33. Deepanraj B., Sivasubramaniam V., Jayaraj S. 2017. Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 1–7.
  • 34. Dennis O.E. 2015. Effect of inoculums on biogas yield. IOSR Journal of Applied Chemistry, 8(2), 5–8
  • 35. Detman A., Mielecki A., Pleśniak L., Bucha M., Janiga M., Matyasik I., Chojnacka A., Jedrysek M.O, Błaszczyk M.K., Sikora A. 2018. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnology for Biofuels, 11(116), 1–18.
  • 36. Dhiyani V., Bhaskar T. 2019. Pyrolysis of Biomass. Academic Press, Cambridge.
  • 37. Dobre P., Nicolae F., Matei F. 2014. Main factors affecting biogas production - an overview. Romanian Biotechnological Letters, 19(3), 9283–9296.
  • 38. Earth Justice. 2021. How Climate Change is Fuelling Extreme Weather. Earth Justice.
  • 39. EESI 2013. Combined Heat and Power: Pathway to Lower Energy Costs, Reduced Emissions, Secure and Resilient Energy Supply. Washington: Environmental and Energy Study Institute.
  • 40. Ellamla H.R., Staffell I., Bujlo P., Pollet B.G., Pasupathi S. 2015. Current status of fuel cell based combined heat and power system for residential sector. Journal of Power Sources, 293, 312–328.
  • 41. Mushtaq F., Mat W.M.R., Ani F.N. 2013 IEEE Conference on Clean Energy and Technology (CEAT), 232–237.
  • 42. Fardin J.F., Jr O.D.B., Dias P.F. 2018. Biomass: Some basics and biogas. Elsevier Publishing Co Inc, United States.
  • 43. Franke-Whittle I.H., Walter A., Ebner C., Insam H. 2014. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management, 34, 2080–2089.
  • 44. Fu X., Achu N.I. Kreuger E., Bjoornsson L. Power and energy engineering conference (APPEEC), 1–4.
  • 45. Gashaw A. 2014. Anaerobic co-digestion of biodegradable municipal solid waste with human excreta for biogas production: A review. American Journal of Applied Chemistry 2(4), 55–62.
  • 46. Gashaw A. 2016. Co-digestion of municipal organic wastes with night soil and cow dung for biogas production: A Review. African Journal of Biotechnology, 15(2), 32–44.
  • 47. Ghatak M.D., Mahanata P. 2018. Effect of temperature on biogas production from rice straw and rice husk. International Conference on Mechanical, Materials and Renewable Energy, 377, 1–8.
  • 48. Giorgi L., Leccese F. 2013. Fuel cells: technologies and applications. The Open Fuel Cells Journal, 6, 1–20.
  • 49. Goswami R., Chattopadhyay P., Shome A., Banerjee S.N., Chakraborty A.K., Mathew A.K., Chaudhury S. 2016. An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech, 6(72), 1–12.
  • 50. Hafeez S., Pallari E., Manos G., Constantinou A. 2019. Catalytic conversion and chemical recovery. William Andrew, New York.
  • 51. Hagos K., Zong J., Li D., Liu C., Lu X. 2016. Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485–1496.
  • 52. Han S., Liu Y., Zhang S., Luo G. 2015. Reactor performances and microbial communities of biogas.
  • 53. He C., Mu Y., Liu X., Yan Z., Yue B. 2011. Biogas. Academic Press, Cambridge.
  • 54. Horvath I.S., Tabatabaei M., Karimi K., Ranjeev Kumar. 2016. Recent updates on biogas production - a review. Biofuel Research Journal, 10, 394–402.
  • 55. Ismail Z.Z., Talib A.R. 2015. Recycled medical cotton industry waste as a source of biogas recovery. Journal of Cleaner Production, 1–6.
  • 56. Jay N.M., Li B., Patel K., Lily B. W. 2018. A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health,15(2224), 1–16.
  • 57. Ji C.M., Eong P.P., Ti T.B., Seng C.E., Ling C.K. 2013. Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s perspective. Renewable and Sustainable Energy Reviews, 26, 717–726.
  • 58. del Real Olvera J., Lopez-Lopez A. 2012. Biogas. Sunil Kumar. IntechOpen.
  • 59. Kalam A., King A., Moret E., Weerasinghe. 2012. Combined heat and power systems: economic and policy barriers to growth. Chemistry Central Journal, 6(3), 1–13.
  • 60. Kamarudin S.K., Muniandy A., Shamsul N.S., Kofli H.T. 2018 E nhanced biogas production from agrowastes by co-digestion with crude glycerol. Jurnal Kejuruteraan SI, 1, 47–57.
  • 61. Khalid A., Arshad M., Anjum M., Mahmood T., Dawson L. 2011. The anaerobic digestion of solid organic waste. Waste Management, 21, 1737–1744.
  • 62. Knowles J. 2011. Overview of small and micro combined heat and power (CHP) systems. Dlm. Beith, R. Small and Micro Combined Heat and Power (CHP) System. Cornwall, Woodland Publications.
  • 63. Komemoto K., Lim Y.G., Nagao N., Onoue Y., Niwa C., Toda T. 2009. Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Management, 29, 2950–2955.
  • 64. Kumar V. K., Sridevi V., Rani K., Sakunthala M., Santosh Kumar. 2013. A review on production of biogas, fundamentals, applications & its recent enhancing techniques. Elixir Chemical Engineering, 57, 14073–14079.
  • 65. Lawal A.A., Dzivama A.U., Wasinda M.K. 2016. Effect of inoculum to substrate ratio on biogas production of sheep paunch manure, Research in Agricultural Engineering, 62(1), 8–14.
  • 66. Lee D.J., Lee S.Y., Bae J.S., Kang J.G., Kim K.H., Rhee S.S., Park J.H., Cho J.S., Chung J., Seo D.C. 2015. Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea. Journal of Chemistry, 2015, 1–9.
  • 67. Lin Y., Wang D., Wang L. 2010. Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. Waste Management & Research, 28, 800–810.
  • 68. Liu G., Zhang R., El-Mashad H.M., Dong, R. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100(2009), 5103–5108.
  • 69. Lukiyawesa, Patinvoh R.J., Milati R., Sarvari-Horvath I., Taherzadeh M.J. 2020. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered, 11(1), 39–52.
  • 70. Luo Li., Kaur G., W W.C. 2019.A mini-review on the metabolic pathways of food waste two-phase anaerobic digestion system. Waste Management & Research, 1–14.
  • 71. Mahmod S.S., Md Jahim J., Abdul P.M. 2017. Pretreatment conditions of palm oil mill effluent (POME) for thermophilic biohydrogen production. International Journal of Hydrogen Energy, 42, 27512–27522.
  • 72. Mainardis M., Buttazzoni M., Goi D. 2020. Up-flow anaerobic sludge blanket (uasb) technology for energy recovery: a review on state-of-the-art and recent technological advances. Bioengineering, 7(43), 1–29.
  • 73. Mekhilef S., Barimani M., Safari A., Salam Z. 2014. Malaysia’s renewable energy policies and programs with green aspects. Renewable and Sustainable Energy Reviews, 40, 497–504.
  • 74. Mekhilef S., Saidur R., Safari A. 2011. Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16, 981–989.
  • 75. Merlin C.M., Gopinath L.R., Divya D. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainanble Energy Reviews, 34, 167–173.
  • 76. Mohammad J. Taherzadeh, Karimi K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.
  • 77. Montgomery, L.F.R. & Bochmann. 2014. Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy.
  • 78. Muda S.A., Elham O.S.J., Abu Hasan H., Abdullah S.R.S. 2016. Production of biogas through anaerobic digestion of Cabomba furcata in digester batch system. Malaysian Journal of Analytical Sciences, 20, 1491–1497.
  • 79. Musa M.A., Idrus S. 2020. Effect of hydraulic retention time on the treatmentof real cattle slaughterhouse wastewater and biogas production from HUASB reactor. Water, 12(490), 1–18.
  • 80. Mutungwazi A., Mukumba P., Makaka G. 2018. Biogas digester types installed in South Africa: A review. Renewable and Sustainable Energy Reviews, 81(2018), 172–180.
  • 81. NRDC. 2013. Combined Heat and Power Systems: Improving the Energy Efficiency of Our Manufacturing Plants, Buildings, and Other Facilities. New York: Natural Resources Defense Council.
  • 82. NREL. 2017. Combined Heat and Power Evaluation Protocol. California: National Renewable Energy Laboratory.
  • 83. Obi1 F.O., Ugwuishiwu B.O., Nwakaire J.N. 2016. Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology 35(4), 957–964.
  • 84. Ohimain E.I., Izah S.C. 2017. A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renewable and Sustainable Energy Reviews, 70, 242–253.
  • 85. Pandey P.K., Soupir M.L. 2012. Impacts of temperatures on biogas production in dairy manure anaerobic digestion. International Journal of Engineering and Technology, 4, 629–631.
  • 86. Pathak J., Srivastava R.K. 2007. Determination of inoculum dose for methane production from food industry effluent. Journal of Industrial Pollution Control, 23(1), 49–54.
  • 87. Pittock A.B. 2009. Climate Change: The Science, Impact and Solutions. Earthscan, New York.
  • 88. Pramanik S.K., Suja F., Pramanik B.K. 2020. Effects of hydraulic retention time on the process performance and microbial community structure of an anaerobic single-stage semi-pilot scale reactor for the treatment of food waste. International Biodeterioration & Biodegradation, 152, 104999.
  • 89. Pramanik S.K., Suja F., Md Zain S., Pramanik B.K. 2019. The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8, 100310.
  • 90. Puan Yatim, Mamat M.N., Mohamad Zailani S.H., Ramlee S. 2016. Energy policy shifts towards sustainable energy future for Malaysia. Clean Technology Environment Policy, 2016, 1–10.
  • 91. Rajput A.A., Sheikh Z. 2019. Effect of inoculum type and organic loading on biogas production of sunflower meal and wheat straw. Sustainable Environment Research, 29(4), 1–10.
  • 92. Ramaraj R., Unpaprom Y. 2016. Effect of temperature on the performance of biogas production from Duckweed. Chemistry Research Journal, 1(1), 58–66.
  • 93. Raposo F., Banks C.J., Siegert I., Heaven S., Borja R. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry, 41,1444–1450.
  • 94. Sabri R.M., Md Jahim J., Takriff M.S. 2018. Comparison of methane production utilizing raw and acidogenic effluent coming from sago starch processing in anaerobic sequencing batch reactor (ASBR). Jurnal Kejuruteraan SI, 1(7), 27–36.
  • 95. Saifuddin N., Fazlili S.A. 2009. Effect of microwave and ultrasonic pretreatments on biogas production from anaerobic digestion of palm oil mill effluent. American Journal of Engineering and Applied Sciences, 2(1),139–146.
  • 96. Salihu A., Alam M.Z. 2016. Pretreatment methods of organic wastes for biogas production. Journal of Applied Science, 16(3), 124–137.
  • 97. Santosh Y., Sreekrishnan T.R., Kohl S., Ratna V. 2004. Enhancement of biogas production from solid substrates using different techniques––a review. Bioresource Technology, 95, 1–10.
  • 98. Sawyer N., Trois C., Workneh T. 2019. Identification and characterization of potential feedstock for biogas production in South Africa. Journal of Ecological Engineering, 20(6), 103–116.
  • 99. Sebola R., Tesfagiorgis H., Muzenda E. 2014. Production of biogas through anaerobic digestion of various waste:r eview. Intl’ Conf. on Chemical, Integrated Waste Management & Environmental Engineering, 196–201.
  • 100. SEDA. 2012. Renewable Energy Status in Malaysia. Kuala Lumpur. Sustainable Energy Development Authority Malaysia.
  • 101. Senes-Guerrero C., Colon-Contreas F., Reynoso-Lobo J.F., Tinoco-Perez B., Siller-Cepeda J.H., Pacheco A. 2019. Biogas‐producing microbial composition of an anaerobic digester and associated bovine residues. MicrobiologyOpen, 1–13.
  • 102. Shafie S.M., Mahlia T.M.I., Masjuki H.H., Andriyana A. 2011. Current energy usage and sustainable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews, 15, 4370–4377.
  • 103. Shah T.A., Lee C.C., Orts W.J., Tabassum R. 2019. Biological Pretreatment of rice straw by ligninolytic bacillus sp. strains for enhancing biogas production. Environmental Progress & Sustainable Energy, 38(3), 1–9.
  • 104. Shamsuddin A.H. 2012. Development of renewable energy in Malaysia strategic initiatives for carbon reduction in the power generation sector. Procedia Engineering, 49, 384–391.
  • 105. Shi X., Dong J., Yu J., Yin H.H., Shu-Min H., Shu-Xia, Yuan X. 2016. Effect of hydraulic retention time on anaerobic digestion of wheat straw in the semicontinuous continuous stirred-tank reactors. BioMed Research International, 2017, 1–6.
  • 106. Shivani1, Misbah B. 2018. Case study of biogas production from various feedstocks. Ecology, Environment and Conservation, 24(4), 1871–1876.
  • 107. Sibiya N.T., Muzenda E., Member IAENG, Mbohwa C. 2017. Evaluation of potential substrates for biogas production via anaerobic digestion: a review. Proc. of the World Congress on Engineering and Computer Science, 1–6.
  • 108. Singh R., Mandal S.K., Jain V.K. 2010. Development of mixed inoculum for methane enriched biogas production. Indian Journal of Microbiology, 50(1), 26–33.
  • 109. Sorathia H.S., Rathod P.P., Sorathiya A.S. 2012. Bio-gas generation and factors affecting the bio-gas generation – a review study. International Journal of Advanced Engineering Technology, 3(3), 72–78.
  • 110. Toma L., Voicu G., Ferdes M., Dinca M. 2016. Animal manure as substrate for biogas production. 15th International Scientific Conference Engineering for Rural Development, 629–634.
  • 111. Udaiyappan A.F.M., Abu Hasan H., Takriff, M.S., Abdullah, S.R.S., Maeda T., Mustapha N.A., Yasin N.H.M., Hakimie N.I.N.M. 2020. Microalgae-bacteria interaction in palm oil mill effluent treatment. Journal of Water Process Engineering, 35, 101203.
  • 112. US Department of Energy. 2015. Innovating Clean Energy Technologies in Advanced Manufacturing. Washington. US Department of Energy.
  • 113. US Department of Energy. 2017. Combined Heat and Power Technology Fact Sheet Series. Washington. US Department of Energy.
  • 114. Venturin B., Bonatto C., Damaceno F.M., Mulinari J., Fongaro G., Treichel H. 2019. Physical, chemical, and biological substrate pretreatments to enhance biogas yield. Springer, Switzerland.
  • 115. Vrieze J.D., Rasport L., Willems B., Verbrugge S., Volcke E., Meers E., Angenent L.T., Boon N.2015. Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microbial Biotechnology, 1–17.
  • 116. Wagner A.O., Lackner N., Mutschlechner M., Prem E.M., Markt R., Illmer P. 2018. Biological Pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies, 11(1797), 1–14.
  • 117. Wang J.J., Zhong J.J. 2007. Bioreactor engineering. Elsevier Publishing Co Inc, United States.
  • 118. Yaeed S., Suksaroj T.T., Suksaroj C. 2017. Mechanical pretreatment processes for enhancement of biogas production from palm oil mill effluent (POME). Desalination and Water Treatment 67, 133–139.
  • 119. Yee Y.C., Kian Weng C., Norli I. 2017. Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews review, 82, 2993–3006.
  • 120. Yu G., Chen X.H., Zhou X., Zhang Y. 2014. Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresource Technology, 158, 149–155.
  • 121. Zabed H.M., Akter S., Yun J.H., Zhang G., Awad F.N., Qi X.H., Sahu J.N. 2019. Recent advances in biological pretreatment of microalgae and ignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, 105, 105–128.
  • 122. Zahariev A., Penkov D., Aladjadiyan A. 2014. Biogas from animal manure – perspectives and barriers in Bulgaria. Annual Research & Review in Biology, 4(5), 709–719.
  • 123. Zhang C., Su H., Baeyens J., Tan T. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 382–392.
  • 124. Zhong W., Zhang Z., Qiao W., Fu P., Liu M. 2011. Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renewable Energy, 36, 1875–1879.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27e36529-b38e-4e43-9686-8c5bcd59dd4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.