Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, by using the notions of λ-density, (V, λ)-summability and Orlicz function ϕ, we introduce a new concept of convergence, namely λ-statistically ϕ-convergence, as a generalization of the λ-statistical convergence and statistically ϕ-convergence. Based on this concept, we introduce a new sequence space Sλ − ϕ and investigate some of its properties. Also, we find its relations with statistically ϕ-convergence, [C, 1]ϕ-summability and [V, λ] ]ϕ-summability. Finally, we introduce and investigate the concept of Sλ − ϕ Cauchy sequences.
Wydawca
Czasopismo
Rocznik
Tom
Strony
75--83
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India
autor
- Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India
autor
- Department of Mathematics, Uşak University, Uşak, Türkiye
Bibliografia
- [1] M. Altınok and M. Küçükaslan, A-statistical convergence and A-statistical monotonicity, Appl. Math. E-Notes 13 (2013), 249-260.
- [2] M. Altınok and M. Küçükaslan, A-statistical supremum-infimum and A-statistical convergence, Azerb. J. Math. 4 (2014), no. 2, 31-42.
- [3] R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953), 335-346.
- [4] H. Çakallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1 (2009), no. 2, 19-24.
- [5] H. Cakalli, M. Et and H. Şengül, A variation on Nθ ward continuity, Georgian Math. J. 27 (2020), no. 2, 191-197.
- [6] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63.
- [7] B. Das, P. Debnath and B. C. Tripathy, On statistically convergent complex uncertain sequences, Carpathian Math. Publ. 14 (2022), no. 1, 135-146.
- [8] B. Das, B. C. Tripathy and P. Debnath, A new type of statistically convergent complex uncertain triple sequence, Thai J. Math. 20 (2022), no. 3, 1441-1450.
- [9] B. Das, B. C. Tripathy and P. Debnath, Some results on statistically convergent triple sequences in an uncertainty space, An. Univ. Craiova Ser. Mat. Inform. 49 (2022), no. 1, 120-134.
- [10] B. Das, B. C. Tripathy, P. Debnath and B. Bhattacharya, Characterization of statistical convergence of complex uncertain double sequence, Anal. Math. Phys. 10 (2020), no. 4, Paper No. 71.
- [11] B. Das, B. C. Tripathy, P. Debnath and B. Bhattacharya, Statistical convergence of complex uncertain triple sequence, Comm. Statist. Theory Methods 51 (2022), no. 20, 7088-7100.
- [12] S. Debnath and C. Choudhury, On I-statistically ϕ-convergence, Proyecciones 40 (2021), no. 3, 593-604.
- [13] M. Et, H. Ş. Kandemir and M. Çinar, On asymptotically lacunary statistical equivalent of order α̃ of difference double sequences, Math. Methods Appl. Sci. 45 (2022), no. 18, 12023-12029.
- [14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [15] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. (3) 37 (1978), no. 3, 508-520.
- [16] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.
- [17] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192.
- [18] B. Hazarika and A. Esi, On asymptotically Wijsman lacunary statistical convergence of set sequences in ideal context, Filomat 31 (2017), no. 9, 2691-2703.
- [19] N. Khusnussaadah and S. Supama, Completeness of sequence spaces generated by an Orlicz function, Eksakta 19 (2019), 1-14.
- [20] M. Küçükaslan and M. Altinok, Statistical supremum-infimum and statistical convergence, Aligarh Bull. Math. 32 (2013), no. 1-2, 39-54.
- [21] L. Leindler, Über die verallgemeinerte de la Vallée-Poussinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar. 16 (1965), 375-387.
- [22] M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems, J. Math. Anal. Appl. 256 (2001), no. 2, 686-693.
- [23] D. S. Mitrinović, J. Sándor and B. Crstici, Handbook of Number Theory, Math. Appl. 351, Kluwer Academic, Dordrecht, 1996.
- [24] Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), no. 1, 111-115.
- [25] Mursaleen, S. Debnath and D. Rakshit, I-statistical limit superior and I-statistical limit inferior, Filomat 31 (2017), no. 7, 2103-2108.
- [26] J. Nath, B. Das, B. Bhattacharya and B. C. Tripathy, On statistically pre-Cauchy sequences of complex uncertain variables defined by Orlicz functions, Internat. J. Uncertain. Fuzziness Knowledge-Based Syst. 31 (2023), no. 2, 191-207.
- [27] J. Nath, B. C. Tripathy, B. Das and B. Bhattacharya, On strongly almost λ-convergence and statistically almost λ-convergence in the environment of uncertainty, Int. J. Gen. Syst. 51 (2022), no. 3, 262-276.
- [28] M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Marcel Dekker, New York, 2002.
- [29] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150.
- [30] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), no. 6, 826-830.
- [31] E. Savas and S. Debnath, Lacunary statistically ϕ-convergence, Note Mat. 39 (2019), no. 2, 111-119.
- [32] E. Savas, S. Debnath and C. Choudhury, On I-statistical ϕ-limit superior and I-statistical ϕ-limit inferior, Southeast Asian Bull. Math. 47 (2023), no. 2, 279-287.
- [33] E. Savaş and S. A. Mohiuddine, λ-statistically convergent double sequences in probabilistic normed spaces, Math. Slovaca 62 (2012), no. 1, 99-108.
- [34] H. Şengül, H. Çakallı and M. Et, A variation on strongly ideal lacunary ward continuity, Bol. Soc. Parana. Mat. (3) 38 (2020), no. 7, 99-108.
- [35] H. Şengül, M. Et and Y. Altin, f -lacunary statistical convergence and strong f -lacunary summability of order α of double sequences, Facta Univ. Ser. Math. Inform. 35 (2020), no. 2, 495-506.
- [36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
- [37] Supama, On statistically ϕ-convergence, Aust. J. Math. Anal. Appl. 19 (2022), no. 2, 1-12.
- [38] B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malaysian Math. Soc. (2) 20 (1997), no. 1, 31-33.
- [39] B. C. Tripathy, On statistically convergent sequences, Bull. Calcutta Math. Soc. 90 (1998), no. 4, 259-262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27e16361-48cf-4fa3-9386-e2bc58775524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.