PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kalman filter based method for fault diagnosis of analog circuits

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a Kalman filter based method for diagnosing both parametric and catastrophic faults in analog circuits. Two major innovations are presented, i.e., the Kalman filter based technique, which can significantly improve the efficiency of diagnosing a fault through an iterative structure, and the Shannon entropy to mitigate the influence of component tolerance. Both these concepts help to achieve higher performance and lower testing cost while maintaining the circuit.s functionality. Our simulations demonstrate that using the Kalman filter based technique leads to good results of fault detection and fault location of analog circuits. Meanwhile, the parasitics, as a result of enhancing accessibility by adding test points, are reduced to minimum, that is, the data used for diagnosis is directly obtained from the system primary output pins in our method. The simulations also show that decision boundaries among faulty circuits have small variations over a wide range of noise-immunity requirements. In addition, experimental results show that the proposed method is superior to the test method based on the subband decomposition combined with coherence function, arisen recently.
Rocznik
Strony
307--322
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr., wzory
Twórcy
autor
  • School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
autor
  • School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
autor
  • School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
autor
  • School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
Bibliografia
  • [1] Starzyk, J. A., Liu, D., Nelson, D.E., Rutkowski, J.O. (2004). Entropy-based optimum test nodes selection for the analog fault dictionary techniques and implementation. Transactions on Instrument & Measurement, 53(3), 754-761.
  • [2] Duhamal, P, Rault, J.C. (1979). Automatic tests generation techniques for analog circuits and systems: a review. Transactions on Circuits and Systems, I., VAS-26, 440-441.
  • [3] Bandler, J.W., Salama A.E. (1981). Fault diagnosis of analog circuits. Proc.IEEE, 73, 1279.1325.
  • [4] Roh, J., Abraham, J.A. (2004). Subband filtering for time and frequency analysis of mixed-signal circuit testing. IEEE Transactions on Instrument & Measurement, 53(2), 602-611.
  • [5] Papakostas, D.K., Hatzopoulos, A.A. (1993). Correlation-based comparison of analog signatures for identification and fault diagnosis. IEEE Transactions on Instrument & Measurement, 42(4), 860-863.
  • [6] Catelani, M., Fort, A. (2000). Fault diagnosis of electronic analog circuits using a radial function network classifier. Measurement, 28, 147-154.
  • [7] Guo, Z, Savir, J. (2006). Coefficient-based test of parametric faults in analog circuits. IEEE Transactions on Instrument & Measurement, 55(1), 150-157.
  • [8] Savir, J., Guo, Z. (2002). On the detectability of parametric faults in analog circuits. IProc.Int.Conf. Computer Design (ICCD). Freiburg, Germany, Sep., 273-276.
  • [9] Yang, C., Tian, S., Long, B., Chen, F. (2011). Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis. IEEE Transactions on Instrument & Measurement, 60(1), 176-185.
  • [10] Deng, Y., Shi, B., Zhang, W. (2012). An approach to locate parametric faults in nonlinear analog circuits. IEEE Transactions on Instrument & Measurement, 61(2), 358-367.
  • [11] Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transaction of the ASME-Journal of Basic Engineering, 34-45.
  • [12] Grewal, M.S., Andrew, A.P. (2008). Kalman filtering: Theory and Practice using MATLAB. Third edition, Wiley&Sons Inc., 1-2.
  • [13] Welch, G., Bishop, G. (2002). An introduction to the Kalman filter. Available:http://www.cs.unc.edu/Welch/kalman/kalmanIntro.html.
  • [14] Brown. R.G., Hwang. P.Y.C. (1992). Introduction to random signals and applied Kalman filtering. Second edition. Wiley&Sons, Inc.
  • [15] Ando. B., Graziani. S. (2001). Adding noise to improve measurement. IEEE Trans. Instrum. & Meas.Magazine. 4(1). 24-31.
  • [16] Kay, S. (2008). Noise enhanced detection as a spectral case of randomization. IEEE Signal Process. Lett. 15. 709-712.
  • [17] Chen, H., Varshnew, P.K., Kay, S., Michels, J.H. (2009). Noise enhanced nonparametric detection. IEEE Trans. Inf. Theory, 55(2), 499-506.
  • [18] Kaminska, B., Arabi, K., Bell, I., Huertas, J.L., Kim, B., Rueda, A., Soma, M. (1997). Analog and mixedsignal benchmark circuits-first release. Proc. IEEE Int. Test Conf. [Online],183-190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27dde449-74fd-46b4-8b81-1cc304dffb0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.