PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Circular economy approach to fatty acid production using aurantiochytrium microalgae and industrial wastes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the sustainable production of fatty acids, specifically docosahexaenoic acid (DHA omega-3), which is essential for the nutrition, cosmetics, and pharmaceutical sectors. The research investigation evaluates the potential of utilizing low-cost substrates in a circular economy framework, employing Aurantiochytrium microalgae, a species recognized for its elevated DHA content and lack of heavy metal contamination. The cultivation process employed three substrates: glycerol, molasses, and fruit waste. The microalgae were cultivated on these substrates, subsequently undergoing sonication to improve emulsion stability. Fatty acid profiles were analyzed using GC-MS to assess DHA yields and the efficiency of biomass production. The findings suggested that glycerol served as the most effective substrate, producing the highest DHA content (54.88%) and wet biomass (53 g). Molasses and fruit waste exhibited moderate efficiency, presenting viable and cost-effective alternatives. Furthermore, glycerol yielded the most uniform emulsion particles (1,874 nm, PI 0.02677), suggesting enhanced substrate compatibility. The findings highlight the capability of Aurantiochytrium-based bioprocesses for the sustainable production of high-value fatty acids. This approach leverages industrial and organic waste materials, enhancing environmental sustainability and economic viability while fostering innovation in microalgae biotechnology.
Słowa kluczowe
Twórcy
autor
  • Department of chemical engineering, Universitas Ahmad Dahlan, Ringroad Selatan, Kragilan, Tamanan, Kec. Banguntapan, Kabupaten Bantul, Daerah Istimewa Yogyakarta 55191, Indonesia
autor
  • Department of chemical engineering, Universitas Ahmad Dahlan, Ringroad Selatan, Kragilan, Tamanan, Kec. Banguntapan, Kabupaten Bantul, Daerah Istimewa Yogyakarta 55191, Indonesia
  • Department of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. DR. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Yogyakarta, 55161, Indonesia
autor
  • Department of Public Health, Universitas Ahmad Dahlan, Jl. Prof. DR. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Yogyakarta, 55161, Indonesia
  • Department of Public Health, Universitas Ahmad Dahlan, Jl. Prof. DR. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Yogyakarta, 55161, Indonesia
autor
  • Department of Biology Education, Unversitas Muhammadiyah Prof. DR. Hamka, Jl. Raya Jakarta-Bogor No.KM.23 No.99, Ciracas, Jakarta Timur, Jakarta 13830 Indonesia
Bibliografia
  • 1. Abad, S., & Turon, X. (2015). Biotechnological production of docosahexaenoic acid using aurantiochytrium limacinum: Carbon sources comparison and growth characterization. Marine Drugs, 13(12), 7275–7284. https://doi.org/10.3390/md13127064
  • 2. Abdel-Wahab, M. A., El-Samawaty, A. E.-R. M. A., Elgorban, A. M., & Bahkali, A. H. (2022). Utilization of low-cost substrates for the production of high biomass , lipid and docosahexaenoic acid ( DHA ) using local native strain. Journal of King Saud University - Science, 34(7), 102224. https://doi.org/10.1016/j.jksus.2022.102224
  • 3. Alhattab, M., & Puri, M. (2024). Harvesting optimization and omega-3 recovery improvement from Schizochytrium DT3 using surfactant-aided dispersed air flotation: Response surface methodology. Algal Research, 80(December 2023), 103512. https://doi.org/10.1016/j.algal.2024.103512
  • 4. Behrens, P. W., & Kyle, D. J. (1996). Microalgae as a Source of Omega 3 Fatty Acids. Journal of Food Lipids, 3, 259–272.
  • 5. Bratu, A., Hanganu, A., Chira, N., Todasca, C., Mihalache, M., Chira, N.-A., Todaşcă, M.-C., & Roşca, S. (2013). Quantitative determination of fatty acids from fish oils using GC-MS method and 1H-NMR spectroscopy QUANTITATIVE DETERMINATION OF FATTY ACIDS FROM FISH OILS USING GC-MS METHOD AND 1 H-NMR SPECTROSCOPY. Bull., Series B, 75(2). https://www.researchgate.net/publication/288545789
  • 6. Eppink, M. H. M., Ventura, S. P. M., Coutinho, J. A. P., & Wijffels, R. H. (2021). Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. In Trends in Biotechnology (Vol. 39, Issue 11, pp. 1131–1143). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2021.02.009
  • 7. Guo, J. X., Ouyang, L. L., Zhou, Z. G., Lin, C. S. K., & Sun, Z. (2022). Sustainable conversion of food waste into high-value products through microalgae-based biorefinery. In Biomass, Biofuels, Biochemicals: Circular Bioeconomy: Technologies for Waste Remediation (pp. 125–152). Elsevier. https://doi.org/10.1016/B978-0-323-88511-9.00017-3
  • 8. Harayama, T., & Shimizu, T. (2020). Roles of polyunsaturated fatty acids, from mediators to membranes. Journal of Lipid Research, 61(8), 1150– 1160. https://doi.org/10.1194/JLR.R120000800
  • 9. Ichihara, K., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. 51. https://doi.org/10.1194/jlr.D001065
  • 10. Ji, X. J., & Huang, H. (2019). Engineering Microbes to Produce Polyunsaturated Fatty Acids. Trends in Biotechnology, 37(4), 344–346. https://doi.org/10.1016/j.tibtech.2018.10.002
  • 11. Kim, K., Shin, H., Moon, M., Ryu, B. G., Han, J. I., Yang, J. W., & Chang, Y. K. (2015). Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresource Technology, 198, 828–835. https://doi.org/10.1016/j.biortech.2015.09.103
  • 12. Monteiro, A. G. de A., Scur, G., Mattos, C. A., & Oliveira, M. C. de. (2024). Circular economy in the Brazilian chemical industry: A proposal for a circularity index. Cleaner Engineering and Technology, 19. https://doi.org/10.1016/j.clet.2024.100730
  • 13. Nazir, Y., Halim, H., Al-Shorgani, N. K. N., Manikan, V., Hamid, A. A., & Song, Y. (2020). Efficient conversion of extracts from low-cost, rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp. SW1. Algal Research, 50. https://doi.org/10.1016/j.algal.2020.101977
  • 14. Nazir, Y., Kaid, N., Al-shorgani, N., Manikan, V., Abdul, A., & Song, Y. (2020). Efficient conversion of extracts from low-cost , rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp . SW1. Algal Research, 50(February). https://doi.org/10.1016/j.algal.2020.101977
  • 15. Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C., & Barrio, R. J. (2020). Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources, 9(12), 1–15. https://doi.org/10.3390/ resources9120148
  • 16. Park, W. K., Moon, M., Shin, S. E., Cho, J. M., Suh, W. I., Chang, Y. K., & Lee, B. (2018). Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Research, 29, 71–79. https://doi.org/10.1016/j. algal.2017.11.017
  • 17. Park, W., Moon, M., Shin, S., Muk, J., & Suh, W. I. (2018). Economical DHA ( Docosahexaenoic acid ) production from Aurantiochytrium sp . KRS101 using orange peel extract and low cost nitrogen sources. Algal Research, 29(July 2017), 71–79. https://doi.org/10.1016/j.algal.2017.11.017
  • 18. Patel, A., Karageorgou, D., Katapodis, P., Sharma, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2021). Bioprospecting of thraustochytrids for omega-3 fatty acids: A sustainable approach to reduce dependency on animal sources. Trends in Food Science and Technology, 115(June), 433–444. https://doi.org/10.1016/j.tifs.2021.06.044
  • 19. Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2019). Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnology for Biofuels, 12(1), 1–12. https://doi.org/10.1186/ s13068-019-1593-6
  • 20. Patel, A., Sarkar, O., Rova, U., Christakopoulos, P., & Matsakas, L. (2021). Bioresource Technology Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review. Bioresource Technology, 321(December 2020), 124457. https://doi.org/10.1016/j.biortech.2020.124457
  • 21. Russo, G. L., Langellotti, A. L., Sacchi, R., & Masi, P. (2022). Techno-economic assessment of DHA-rich Aurantiochytrium sp. production using food industry by-products and waste streams as alternative growth media. Bioresource Technology Reports, 18. https://doi.org/10.1016/j.biteb.2022.100997
  • 22. Russo, G. L., Langellotti, A. L., Verardo, V., Martín- García, B., Di Pierro, P., Sorrentino, A., Baselice, M., Oliviero, M., Sacchi, R., & Masi, P. (2022). Formulation of new media from dairy and brewery wastes for a sustainable production of dha-rich oil by aurantiochytrium mangrovei. Marine Drugs, 20(1). https://doi.org/10.3390/md20010039
  • 23. Sakhi Ghelichi, Mona Hajfathalian, Pedro J. García-Moreno, Betül Yesiltas, Ann-Dorit Moltke- Sørensen, & Charlotte Jacobsen. (2021). Food enrichment with omega-3 polyunsaturated fatty acids. Omega-3 Delivery Systems, 395–425.
  • 24. Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology, 9, 345–381. https://doi.org/10.1146/annurev-food-111317-095850
  • 25. Suhendra, Hutari, A., Setiawan, M., Laksana, Z. A., Marno, S., & Anggraini, I. D. (2024). Sustainable production of valuable lipids from Indonesian Aurantiochytrium microalgae for green biofuel and biochemical. AIP, 040004. https://doi.org/10.1063/5.0249083
  • 26. Sulistiawati, E., Suhendra, Setyawan, M., & Mahsunah, A. H. (2023). Double step method in lipid extraction from biomass Aurantiochytrium sp powder. International Journal of Advances in Applied Sciences, 12(4), 376–383. https://doi.org/10.11591/ijaas.v12.i4.pp376-383
  • 27. Swetha, N., & Mathanghi, S. K. (2024). Towards sustainable omega-3 fatty acids production – A comprehensive review on extraction methods, oxidative stability and bio-availability enhancement. Food Chemistry Advances, 4(December 2023), 100603. https://doi.org/10.1016/j.focha.2023.100603
  • 28. Yi, T., Li, S., Fan, J., Fan, L., Zhang, Z., Luo, P., Zhang, X., Wang, J., Zhu, L., Zhao, Z., & Chen, H. (2014). Comparative analysis of EPA and DHA in fish oil nutritional capsules by GC-MS. 13(1), 1–6. https://doi.org/10.1186/1476-511X-13-190
  • 29. Yu, X. J., Sun, J., Sun, Y. Q., Zheng, J. Y., & Wang, Z. (2016). Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochemical Engineering Journal, 112, 258–268. https://doi.org/10.1016/j.bej.2016.05.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27db8408-0ff4-4075-8b6b-c2748f957c87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.