PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue fracture cross-sections after cyclic tests with a combination of cyclic bending and torsion of samples made of aluminum alloy 6060

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of fatigue tests of the 6060 aluminum alloy. The test material was taken from the profiles used for the production of side windows and external doors of the passenger trains by the RAWAG company. The tests were carried out for cyclic loads with pure bending, pure torsion, and two combinations of bending and torsion. Fatigue tests were performed at zero mean values. Using scanning electron microscopy, a fractographic analysis was made, which is a supplementary basic for considerations about the mechanism of initiation and development of fatigue cracks. Based on the appearance of individual zones and the characteristics of cracks, a picture of the behavior of the material under specific conditions was obtained. Finally, the plastic property of fatigue cracks was indicated.
Słowa kluczowe
Rocznik
Strony
art. no. 176203
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab., wykr.
Bibliografia
  • 1. Achtelik H., Kurek M., Kurek A., Kluger K., Pawliczek R., Łagoda T. Non-standard fatigue stands for material testing under bending and torsion loading. AIP Conference Proceedings. Mechatronic Systems and Materials 2018; 2029(1): 020001-1-020001-14, https://doi.org/10.1063/1.5066463.
  • 2. Asseala S.A., Gomaa F.R. Fatigue life estimation of 6061 aluminium alloy based on modal damping measurements. Engineering Research Journal 2005; 38: 395-406, https://doi.org/10.21608/ERJM.2005.70255.
  • 3. ASTM E 739–91. Standard practice for statistical analysis of linearized stress–life (S–N) and strain life fatigue data (in): Annual Book of ASTM Standards. Philadelphia, Press: 1999; 614–628.
  • 4. Beretta S., Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue & Fracture of Engineering Materials & Structures 1998; 21: 1049–1065, https://doi.org/10.1046/j.1460-2695.1998.00104.x.
  • 5. Blacha Ł., Karolczuk A., Bański R., Stasiuk P. Application of the weakest link analysis to the area of fatigue design of steel welded joints. Engineering Failure Analysis 2013; 35: 665-677, https://doi.org/10.1016/j.engfailanal.2013.06.012.
  • 6. Blacha Ł., Karolczuk A. Validation of the weakest link approach and the proposed Weibull based probability distribution of failure for fatigue design of steel welded joints. Engineering Failure Analysis 2016; 67: 46-62, https://doi.org/10.1016/j.engfailanal.2016.05.022.
  • 7. Boni L., Lanciotti A., Polese C. “Size effect’’ in the fatigue behavior of Friction Stir Welded plates. International Journalof Fatigue 2015; 80: 238-245, https://doi.org/10.1016/j.ijfatigue.2015.06.010.
  • 8. Borrego L.P., Abreu L.M., Costa J.M., Ferreira J.M. Analysis of low cycle fatigue in AlMgSi aluminium alloys. Engineering Failure Analysis 2004; 11: 715–725, https://doi.org/10.1016/j.engfailanal.2003.09.003.
  • 9. Carpinteri A., Spagnoli A., Sabrina Vantadori S. Size effect in S–N curves: A fractal approach to finite-life fatigue strength. International Journal of Fatigue 2009; 31(5): 927-933, https://doi.org/10.1016/j.ijfatigue.2008.10.001.
  • 10. Da Silva L.F., Ochsner A., Adams R.D. (Editors). Handbook of Adhesion Technology, Vol. 2, Springer. Press: 2011.https://doi.org/10.1007/978-3-642-01169-6
  • 11. EN 515:2017-05 -Aluminium and aluminium alloys –Wrought products –Temper designations.
  • 12. EN 573-1 -2004-Aluminium and aluminium alloys -Chemical composition and form of wrought products -Part 1: Numerical designation system.
  • 13. EN 755-2 -2016 -Aluminium and aluminium alloys -Extruded rod/bar, tube and profiles -Part 2: Mechanical properties.
  • 14. Fang Y., Zhang Y.(H) (Editors). China’s High-Speed Rail Technology, An International Perspective, Advances in High-speed Rail Technology. Springer, Zhejiang University Press. https://doi.org/10.1007/978-981-10-5610-9.
  • 15. Farmer S. M. Aluminum Fatigue: A literature review covering its influence on engineering from design to end of service. Master of Engineering in Aerospace Engineering, Blacksburg, Virginia. Press: 2022.
  • 16. Feng G., Shengchuan W.,Jianxin L., Zhengkai W., Shanqiang F., Sansan D. A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bodies. Engineering Fracture Mechanics 2021; 248:107711, https://doi.org/10.1016/j.engfracmech.2021.107711.
  • 17. Gou G., Zhanga M., Chena H., Chena J., Li P., Yang Y.P. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains. Materials and Design 2015;85:309–317, http://dx.doi.org/10.1016/j.matdes.2015.06.177.
  • 18. Gough H.J., Pollard H.V., Clenshaw W.J. Some experiments on the resistance of metals to fatigue under combined stresses. AeroResearch Council, London, Rand m 2522, H.M.S.O. Press: 1951.
  • 19. Hockaufa K., Niendorf T., Wagner S., Halle T., Meyer L.W. Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatigue. Procedia Engineering 2010; 2: 2199–2208, https://doi.org/10.1016/j.proeng.2010.03.236.
  • 20. Janutienė R., Mažeika D.. Analysis and fracture of aluminium alloy components used for spinning of chemical fiber. International Scientific Journal “Machines. Technologies. Materials” 2018; 6: 251-254.
  • 21. Jha S.K., Balakumar D., Paluchamy R. Experimental Analysis of Mechanical Properties on AA 6060 and 6061 Aluminum Alloys International Journal of Engineering Research and Applications 2015; 5(4): 47-53.
  • 22. Kazymyrovych V. Very high cycle fatigue of engineering materials. Karlstad University Studies 2009:22.
  • 23. Klawonn A., Hagenackera N, Beck T. A probabilistic Haigh diagram based on a weakest link approach. International Journal of Fatigue 2015; 133: 105419, https://doi.org/10.1016/j.ijfatigue.2019.105419.
  • 24. Kowalski A., Ozgowicz W., Grajcar A., Lech-Grega M., Kurek A. Microstructure and Fatigue Properties of AlZn6Mg0.8Zr Alloy Subjected to Low-Temperature Thermomechanical Processing. Metals 2017; 7(10): 448, https://doi.org/10.3390/met7100448.
  • 25. Kowalski A., Ozgowicz W., Jurczak W., Grajcar A., Boczkal S., Kurek A. Microstructural and Fractographic Analysis of Plastically Deformed Al-Zn-Mg Alloy Subjected to Combined High-Cycle Bending-Torsion Fatigue. Metals 2018; 8(7): 487, https://doi.org/10.3390/met8070487.
  • 26. Kucukrendeci I. Mechanical and microstructural properties of EN AW-6060 aluminum alloy joints produced by friction stir welding. Bulletin of The Polish Academy of Sciences Technical Sciences 2015; 63(2): 475-478, https://doi.org/10.1515/bpasts-2015-0054.
  • 27. Li Z., Wang Q., Luo A.A., Fu P., Peng L. Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys. International Journal of Fatigue 2015; 80: 468–476, https://doi.org/10.1016/j.ijfatigue.2015.07.001.
  • 28. Lindström S.B., Moverare J., Xu J., Leidermark D., Eriksson R., Ansell H., Kapidžić Z. Service-life assessment of aircraft integral structures based on incremental fatigue damage modeling. International Journal of Fatigue 2023;172:107600, https://doi.org/10.1016/j.ijfatigue.2023.107600.
  • 29. Lu Y., Zheng H., Zeng J., Chen T., Wu P. Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test. Reliability Engineering and System Safety 2019;188:221–232, https://doi.org/10.1016/j.ress.2019.03.033.
  • 30. Małecka J., Łagoda T. Fatigue and fractures of RG7 bronze after cyclic torsion and bending,. International Journal of Fatigue2023; 168: 107475, https://doi.org/10.1016/j.ijfatigue.2022.107475.
  • 31. Miao B.R., Luo Y.X., Peng Q.M., Qiu Y.Z., Chen H., Yang Z.K. Multidisciplinary design optimization of lightweight carbody for fatigue assessment. Materials and Design 2020;194:108910, https://doi.org/10.1016/j.matdes.2020.108910.
  • 32. Morgadoa T., Paulo D., Velhinhoe A., Pereiraf M., Mourao A. Fatigue Limit Prediction Models of 6060 Aluminium Extruded Alloy.Procedia Structural Integrity 2022; 42: 1545–1551, https://doi.org/10.1016/j.mspro.2014.06.150.
  • 33. NI Y-Q., YE XW (Editors). Proceedings of the 1st International Workshop on High-Speed and Intercity Railways. Lecture Notes in Electrical Engineering. Volume 147, Springer. Press: 2012.https://doi.org/10.1007/978-3-642-27963-8
  • 34. Nickel D., Dietrich D., Mehner T., Frint P., Spieler D., Lampke T.Effect of Strain Localization on Pitting Corrosion of an AlMgSi0.5 Alloy. Metals 2015; 5(1): 172-191, https://doi.org/10.3390/met5010172.
  • 35. Sung S., Park C.S., Kim K.H., Shin B.C., Min A.K. Fatigue Strength Evaluation of the Aluminium Carbody of Urban Transit Unit by Large Scale Dynamit Load Test. JSME International Journal 2005, Series A; 48 (1).https://doi.org/10.1299/jsmea.48.27
  • 36. Telesman J. Review of the Effects of Micro structure on Fatigue in Aluminum Alloys. NASA Technical Memorandum 83626, Lewis Research Center, Cleveland, Ohio. Press: 1984.
  • 37. Transport Systems And Technologies. Collection of Scientific Papers of the State University of Infrastructure and Technologies Series: Transport Systems and Technologies. Ministry of Education and Science of Ukraine State University of Infrastructure and Technologies, Issue 41, Kyiv. Press: 2023.
  • 38. Wagener R., Melz T. Fatigue life curve –A continuous Wöhler curve from LCF to VHCF. Fatigue Testing 2018; 10: 924-930, https://doi.org/10.3139/120.111233.
  • 39. Weigang H., Zhiming L., Dekun L., Xue H. Fatigue failure analysis of high speed train gearbox housings. Engineering Failure Analysis 2017;73: 57–71, http://dx.doi.org/10.1016/j.engfailanal.2016.12.008.
  • 40. Weiyuan D., Lele Z., Haifeng C., Haifeng Z., Changqing L. Fatigue Characterization on a Cast Aluminum Beam of a High Speed Train Through Numerical Simulation and Experiments. Chinese Journal of Mechanical Engineering 2021; 34:108, https://doi.org/10.1186/s10033-021-00628-6.
  • 41. Winter L., Hockauf K., Lampke T. Mean stress sensitivity of the fatigue strength after equalchannel angular pressing of the aluminum alloys 6082 and 6060. IOP Conf. Series: Materials Science and Engineering 2019; 480: 012032, https://doi.org/10.1088/1757-899X/480/1/012032.
  • 42. Yaohui L., Penglin X., Dongb P., Xing Z., Jing Z. Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames. Engineering Failure Analysis 2018;89: 222–241, https://doi.org/10.1016/j.engfailanal.2018.02.025.
  • 43. Zhengkai W., Xiru Z. Tensile and fatigue behaviors of hybrid laser welded A7N01 alloy with repairing for railway vehicles. Engineering Failure Analysis 2023;143:106930, https://doi.org/10.1016/j.engfailanal.2022.106930.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27db3717-7180-4f53-82fb-2d7461a68f88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.