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Abstract: Minimum energy control problem for the fractional positive electrical circuits 
is formulated and solved. Sufficient conditions for the existence of solution to the prob-
lem are established. A procedure for solving of the problem is proposed and illustrated 
by an example of fractional positive electrical circuit. 
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1. Introduction 
 

 A dynamical system is called positive if its trajectory starting from any nonnegative initial 
state remains forever in the positive orthant for all nonnegative inputs. An overview of state of 
the art in positive theory is given in the monographs [3, 7]. Variety of models having positive 
behavior can be found in engineering, economics, social sciences, biology and medicine, etc.  
 Mathematical fundamentals of the fractional calculus are given in the monographs [26-28]. 
The positive fractional linear systems have been investigated in [6, 9, 10, 20]. Stability of 
fractional linear continuous-time systems has been investigated in the papers [1, 11, 20]. The 
notion of practical stability of positive fractional linear systems has been introduced in [11]. 
Some recent interesting results in fractional systems theory and its applications can be found 
in [2, 12, 29-31].  
 The minimum energy control problem for standard linear systems has been formulated and 
solved by J. Klamka [22-24] and for 2D linear systems with variable coefficients in [18]. The 
controllability and minimum energy control problem of fractional discrete-time linear systems 
has been investigated by Klamka in [25]. The minimum energy control of fractional positive 
continuous-time linear systems has been addressed in [14, 18, 20] and for descriptor positive 
discrete-time linear systems in [13, 16, 17, 19]. 
 In this paper the minimum energy control problem for positive electrical circuits will be 
formulated and solved.  
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 The paper is organized as follows. In section 2 the basic definitions and theorems of the 
fractional positive electrical circuits are recalled and the necessary and sufficient conditions 
for the reachability of the electrical circuits are given.  
 The main result of the paper is given in section 3 where minimum energy control problem 
is formulated, sufficient conditions for its solution are established and a procedure is proposed. 
Illustrating example of fractional positive electrical circuits is given in section 4. An extension 
to the method is presented in section 5. Concluding remarks are given in section 6. 
 The following notation will be used: ℜ  – the set of real numbers, mn×ℜ  – the set of mn×  
real matrices, mn×

+ℜ  – the set of mn×  matrices with nonnegative entries and 1×
++ ℜ=ℜ nn , 

nM  – the set of nn×  Metzler matrices (real matrices with nonnegative off-diagonal entries), 
nI  – the nn×  identity matrix.  

 
 

2. Preliminaries 
 
 The following Caputo definition of the fractional derivative will be used [20] 
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where ℜ∈α  is the order of fractional derivative and 
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is the gamma function. 
 Consider a fractional electrical circuits composed of resistors, coils, condensators and vol-
tage (current) sources. Using the Kirchhoff’s laws we may describe the transient states in the 
electrical circuits by state equations [2, 4, 13, 20, 28, 29] 

  10),()()( ≤<+= αα tButAxtxD , (2.2) 

where ,)( ntx ℜ∈  mtu ℜ∈)(  are the state and input vectors and ,nnA ×ℜ∈  .mnB ×ℜ∈  

Theorem 2.1. [20] The solution of Equation (2.2) is given by 
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and )( α
α AtE  is the Mittage-Leffler matrix function [20]. 

Definition 2.1. [20] The fractional system (2.2) is called the (internally) positive fractional 
system if and only if ntx +ℜ∈)(  for 0≥t  for any initial conditions nx +ℜ∈0  and all inputs 

,)( mtu +ℜ∈  .0≥t  

Theorem 2.2. [20] The continuous-time fractional electrical circuit (2.2) is (internally) posi-
tive if and only if the matrix A is a Metzler matrix and 

  mn
n BMA ×

+ℜ∈∈ , . (2.6) 

Definition 2.2. The state n
fx +ℜ∈  of the fractional electrical circuit (2.2) is called reachable 

in time ],0[ ft  if there exists an input ],0[,)( f
m tttu ∈ℜ∈ +  which steers the state of sys-

tem (2.2) from zero initial state 00 =x  to the state .fx   
 A real square matrix is called monomial if each its row and each its column contains only 
one positive entry and the remaining entries are zero. 

Theorem 2.3. The positive fractional electrical circuit (2.2) is reachable in time ],0[ ftt∈  if 
and only if the matrix nMA∈  is diagonal and the matrix nnB ×

+ℜ∈  is monomial. 

Proof. Sufficiency. It is well known [7, 20] that if nMA∈  is diagonal then nnt ×
+ℜ∈Φ )(  is 

also diagonal and if mnB ×
+ℜ∈  is monomial then nnTBB ×

+ℜ∈  is also monomial. In this case 
the matrix 
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is also monomial and nn
fR ×

+
− ℜ∈1 . The input 
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steers the state of the system (2.2) from 00 =x  to fx  since using (2.3) for 00 =x  and (2.5) 
we obtain 
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 The proof of necessity is given in [14]. 
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3. Problem formulation and its solution 
 
 Consider the fractional positive electrical circuit (2.2) with nMA∈  and mnB ×

+ℜ∈  mono-
mial. If the electrical circuit is reachable in time ],0[ ftt∈ , then usually there exists many 
different inputs ntu +ℜ∈)(  that steers the state of the system from 00 =x  to n

fx +ℜ∈ . Among 
these inputs we are looking for input ,)( ntu +ℜ∈  ],0[ ftt∈  that minimizes the performance 
index 

  ∫=
ft

T QuuuI
0

d)()()( τττ , (3.1) 

where nnQ ×
+ℜ∈  is a symmetric positive defined matrix and nnQ ×

+
− ℜ∈1 .  

 The minimum energy control problem for the fractional positive electrical circuit (2.2) can 
be stated as follows.  
 Given the matrices nMA∈ , mnB ×

+ℜ∈ , α and nnQ ×
+ℜ∈  of the performance matrix (3.1), 

n
fx +ℜ∈  and 0>ft , find an input ntu +ℜ∈)(  for ],0[ ftt∈  that steers the state vector of the 

system from 00 =x  to n
fx +ℜ∈  and minimizes the performance index (3.1). 

 To solve the problem we define the matrix 
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f
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where )(tΦ  is defined by (2.5). From (3.2) and Theorem 2.3 it follows that the matrix (3.2) is 
monomial if and only if the fractional positive electrical circuit (2.2) is reachable in time 

],0[ ft . In this case we may define the input 

  fff
TT xtWttBQtu )()()(ˆ 11 −− −Φ=  for ],0[ ftt∈ .  (3.3) 

 Note that the input (3.3) satisfies the condition ntu +ℜ∈)(  for ],0[ ftt∈  if 

  nnQ ×
+
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ftW ×

+
− ℜ∈)(1 . (3.4) 

Theorem 3.1. Let ntu +ℜ∈)(  for ],0[ ftt∈  be an input that steers the state of the fractional 
positive electrical circuit (2.2) from 00 =x  to n

fx +ℜ∈ . Then the input (3.3) also steers the 
state of the system from 00 =x  to n

fx +ℜ∈  and minimizes the performance index (3.1), 
i.e. )()ˆ( uIuI ≤ . 
 The minimal value of the performance index (3.1) is equal to 

  ff
T
f xtWxuI )()ˆ( 1−= . (3.5) 

Proof. If the conditions (3.4) are met then the input (3.3) is well defined and ntu +ℜ∈)(ˆ  for 
],0[ ftt∈ . We shall show that the input steers the state of the system from 00 =x  to n

fx +ℜ∈ . 
Substitution of (3.3) into (2.3) for ftt =  and 00 =x  yields 
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since (3.2) holds. By assumption the inputs )(tu  and )(ˆ tu , ],0[ ftt∈  steers the state of the 
system from 00 =x  to n

fx +ℜ∈ , i.e. 
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 By transposition of (3.6c) and postmultiplication by ff xtW )(1−  we obtain 
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 Substitution of (3.3) into (3.7) yields 
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 Using (3.8) it is easy to verify that 
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 From (3.9) it follows that )()ˆ( uIuI <  since the second term in the right-hand side of the 
inequality is nonnegative. To find the minimal value of the performance index (3.1) we substi-
tute (3.3) into (3.1) and we obtain 
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since (3.2) holds. 
 From the above considerations we have the following procedure for computation of the 
optimal inputs that steers the state of the system from 00 =x  to n

fx +ℜ∈  and minimizes the 
performance index (3.1). 
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 Procedure 3.1. 
 Step 1. Knowing nMA∈  and using (2.5) compute )(tΦ . 
 Step 2. Using (3.2) compute the matrix Wf  for given A, B, Q, α and some tf. 
 Step 3. Using (3.3) compute the desired )(ˆ tu  for given n

fx +ℜ∈ . 
 Step 4. Using (3.5) compute the maximal value of the performance index. 
 
 

4. Example 
 
 Consider the fractional electrical circuit shown on Fig. 4.1 with given resistances 

321 ,, RRR , inductances 21, LL  and source voltages 21,ee .  
 

  
Fig. 4.1. Electrical circuit 

 
 Using the Kirchhoff’s laws we can write the equations 
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 The fractional electrical circuit is positive since the matrix A is Metzler matrix and the 
matrix B has nonnegative entries. Note that the standard pair (4.2b) is reachable since 

0det ≠B  but it is not reachable as a positive pair. 
 We shall show that the fractional positive electrical circuit is reachable if 03 =R . In this 
case 
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and using (2.5) we obtain 
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 The matrix (4.4) and the matrix B defined by (4.2b) are monomial and by Theorem 2.3 the 
fractional positive electrical circuit is reachable if 03 =R  and any values of 21, RR , 21, LL . 
 The minimum energy control problem of the fractional positive reachable electrical circuit 
can be stated as follows: Compute the input 2)(ˆ +ℜ∈tu  that steers the state of the electric al 
circuit from zero state to T

fx ]11[=  (T denotes the transpose) and minimizes the performance 
index (3.1) with 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

20
02

Q . (4.5) 

 Using the procedure 3.1 we obtain the following: 
 Step 1. The matrix )(tΦ  has the form (4.4).  
 Step 2. Using (3.2), (4.4), (4.2b) and (4.5) we get 
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 Step 3. Using (3.3), (4.5) and (4.6) we obtain 
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 Step 4. From (3.5) and (4.6) we have the minimal value of the performance index 
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5. Extension to fractional positive electrical circuits with different orders 

 
 Consider an electrical circuit composed of resistors, n capacitors and m voltage (current) 
sources. Using the Kirchhoff’s laws we may describe the transient states in the electrical cir-
cuit by the fractional differential equation 

  )()(
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)(d tButAx
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+=α

α
,  10 <<α , (5.1) 

where ntx ℜ∈)( , mtu ℜ∈)( , nnA ×ℜ∈ , mnB ×ℜ∈ . The components of the state vector )(tx  
and input vector )(tu  are the voltages on the condensators and source voltages, respectively. 
Similarly, using the Kirchhoff’s laws we may describe the transient states in the electrical cir-
cuit composed of resistances, inductances and voltage (current) sources by the fractional dif-
ferential equation 

  )()(
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)(d tButAx
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+=β

β
, 10 << β , (5.2) 

where ntx ℜ∈)( , mtu ℜ∈)( , mnB ×ℜ∈ . In this case the components of the state vector )(tx  
are the currents in the coils. 
 Now let us consider electrical circuit composed of resistors, capacitors, coils and voltage 
(current) source. As the state variables (the components of the state vector )(tx ) we choose 
the voltages on the capacitors and the currents in the coils. Using the Equations (5.1), (5.2) 
and Kirchhoff’s laws we may write for the fractional linear circuits in the transient states the 
state equation 
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where the components 1n
Cx ℜ∈  are voltages on the condensators, the components 2n

Lx ℜ∈  
are currents in the coils and the components of mu ℜ∈  are the source voltages and 
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Theorem 5.1. The solution of the Equation (5.3) for 10;10 <<<< βα  with initial condi-
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 Proof is given in [10, 20]. 
 

Brought to you by | Uniwersytetu Technologicznego w Szczecinie - Biblioteka Glówna Zachodniopomorskiego
Authenticated

Download Date | 7/5/16 8:06 AM



                                                                       T. Kaczorek                                                            Arch. Elect. Eng. 200 

 The extension of Theorem 5.1 to systems consisting of n subsystems with different frac-
tional orders is given in [10]. 
 

6. Concluding remarks 
 
 Necessary and sufficient conditions for the reachability of the fractional positive electrical 
circuit have been established (Theorem 2.2). The minimum energy control problem for the 
fractional positive electrical circuits has been formulated and solved. Sufficient conditions for 
the existence of a solution to the problem has been given (Theorem 3.1) and a procedure for 
computation of optimal input and the minimal value of performance index has been proposed. 
The effectiveness of the procedure has been demonstrated on the example of fractional posi-
tive electrical circuit. The presented method can be extended to positive discrete-time linear 
systems and to fractional positive discrete-time linear systems with bounded inputs. 
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