PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of MXenes on the mechanical, antistatic, and heat-resistant properties of CF/PI composites

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon fiber (CF) and MXene were filled in polyimide (PI) to prepare the CF/MXene/PI composite by compression molding. High-resistance meter, thermal conductivity tester, and scanning electron microscope were used to study the antistatic performance, thermal performance, and mechanical performance of the CF/MXene/PI composite, and the effect of heat treatment on the composite’s mechanical properties is discussed. The results show that when the mass fractions of CF and MXene increase, the tensile strength and impact strength of CF/PI and CF/MXene/PI composites all show a trend of first increasing and then decreasing. And when the mass fractions of CF and MXene are 15% and 3%, respectively, the performance of the CF/MXene/PI composite is better. The thermal conductivity of the CF/MXene/PI composite shows an increase with increase in the mass fraction of MXene. Heat treatment affects the mechanical properties of the CF/MXene/PI composite. When the treatment temperature is >240°C, the tensile strength and impact strength of the composite do not change much.
Słowa kluczowe
Wydawca
Rocznik
Strony
507--516
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Shanghai Urban construction vocational college Shanghai, China
Bibliografia
  • [1] Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol. 2016;135:28–38. https://doi.org/10.1016/j.compscitech.2016.09.007
  • [2] Hancox NL. Thermal effects on polymer matrix composites: part 1-thermal cycling. Mater Des. 1998;19(3):85–91. https://doi.org/10.1016/S0261-3069(98)00018-1
  • [3] Hancox NL. Thermal effects on polymer matrix composites: part 2-thermal degradation. Mater Des. 1998;19(3):93–7. https://doi.org/10.1016/S0261-3069(98)00019-3
  • [4] Fan J, Hu X, Yue CY. Thermal degradation study of interpenetting polymer network based on modified bismaleimide resin and cyanate ester. Polym Int. 2003;52(1):15–22. https://doi.org/10.1002/pi.962
  • [5] Skourlis TP, McCullough RL. The behavior of temperature in polymeric composites. Compos Sci Technol. 1993;49(4):363–8. https://doi.org/10.1016/0266-3538(93)90068-R
  • [6] Lowe A, Fox B, Otieno-Alego V. Interfacial ageing of high temperature carbon/bismaleimide composites. Compos Sci Manuf. 2002;33(10):1289–92. https://doi.org/10.1016/S1359-835X(02)00163-X
  • [7] Dar MA, Subramanian N, Anbarasu M, Ghowsi AF, Arif PA, Dar AR. Testing and FE simulation of lightweight CFS composite built-up columns: axial strength and deformation behavior. Thin-Walled Struct. 2021;167:108222. https://doi.org/10.1016/j.tws.2021.108222
  • [8] Mamalis D, Floreani C, Bradaigh CM. Influence of hygrothermal ageing on the mechanical properties of unidirectional carbon fibre reinforced powder epoxy composites. Compos Part B. 2021;225:109281 https://doi.org/10.1016/j.compositesb.2021.109281
  • [9] Bullions TA, McGrath JE, Loos AC. Thermal-oxidative aging effects on the properties of a carbon fiber-reinforced phenylethynyl-terminated poly(etherimide). Compos Sci Technol. 2003;63(12):1737–48. https://doi.org/10.1016/S0266-3538(03)00089-7
  • [10] Seo HY, Cho KY, Im D, Kwon YJ, Shon M, Baek KY, et al. High mechanical properties of covalently functionalized carbon fiber and polypropylene composites by enhanced interfacial adhesion derived from rationally designed polymer compatibilizers. Compos Part B. 2022;228:109439. https://doi.org/10.1016/j.compositesb.2021.109439
  • [11] Huang H, Li DX, Ming H. Effects of hollow glass bead on properties of fiber reinforced polypropylene. Eng Plast Appl. 2012;40(4):80 (in Chinese).
  • [12] Wang T, Chen S, Wang Q, Pei X. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead. Mater Des. 2010;31(8):3810–5. https://doi.org/10.1016/j.matdes.2010.03.029
  • [13] Wang Q, Zhang X, Pei X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites. Mater Des. 2010;31(8): 3761–8. https://doi.org/10.1016/j.matdes.2010.03.017
  • [14] Ai JY, He YJ, Xiao ST. A study on the preparation and the properties of carbon fiber reinforced polycarbonate. FRP/CM. 2010;2:38–7 (in Chinese).
  • [15] Zengbo YI, Libang FE, Xiangzhong HA, Xiangjun XU, Yuxiong GU. Effect of surface treatment on properties of carbon fiber and reinforced composites. Chin J Mater Res. 2015;29(1):97 (in Chinese).
  • [16] Han S, Duan YX, Li C, Zhao Y, Luo J. Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patterns. Acta Mater Compos Sin. 2011;28(5):52–7 (in Chinese).
  • [17] Huang YJ, Vaikhanski L, Nutt SR. 3D long fiber-reinforced syntactic foam based on hollow polymeric microspheres. Compos Part A. 2006;37:488. https://doi.org/10.1016/j.compositesa.2005.02.014
  • [18] Wouterson EM, Boey FY, Hu X, Wong SC. Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer. 2007;48(11):3183–91. https://doi.org/10.1016/j.polymer.2007.03.069
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27d81495-3dab-4b6f-b1c9-77e5e77443e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.