PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of friction and wear processes in an innovative spine stabilization system. Part 1. A study of static and kinetic friction of a metal rod-polymer cord friction joint

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This analysis is the first part of research that aims to develop a model of the tribological wear of PE-UHMW cord – biometal rod combination. This type of sliding joint is applied in spine stabilization systems that enable the treatment of early-onset idiopathic scoliosis. Methods: The friction tests included force measurements, followed by the determination of static and kinetic friction coefficients as a function of the number of the performed movement cycles, and static friction coefficient with regards to the string tension force FN in the range of 50–300 N. Additionally, the surface roughness and microscopic observations of the metal rods were made. The friction measurements were carried out at a stabilized temperature T = 38 °C in the presence of distilled water and acidic sodium lactate. Results: The measurements confirmed the impact of both the number of completed movement cycles and the value of the force loaded on the cord on the static friction coefficient. Similar values of kinetic friction force occur for the pairs with the titanium alloys rods, as well as for the pairs with the steel and CoCr rod. The type of lubricant affected the obtained measurement results unevenly: (Ti6Al4V and Ti6Al7Nb – slight impact, steel 316L and CoCrMo – large impact). During microscopic observations, numerous wear products, were visible, including harder than the base material large conglomerates. Conclusions: Susceptibility of polymer fibres results in its increased resistance to wear, but it can be also combined with an increase in wear of the surface of the metal rod.
Słowa kluczowe
Rocznik
Strony
118--130
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland.
Bibliografia
  • [1] ADAMS M.A., HUTTON W.C., STOTT J.R., The resistance to flexion of the lumbar intervertebral joint, Spine (Phila. Pa. 1976), 1980, 5, 245–253.
  • [2] BĘDZIŃSKI R., Engineering Biomechanics: selected issues, Oficyna Wydawnicza Politechniki Wrocławskiej, 1997 (in Polish).
  • [3] BOGIE R., ARTS J.J., KOOLE S.N., VAN RHIJN L.W., WILLEMS P.C., The Use of Metal Sublaminar Wires in Modern Growth-Guidance Scoliosis Surgery: A Report of 4 Cases and Literature Review, Int. J. Spine Surg., 2020.
  • [4] BOGIE R., ROTH A., FABER S., WELTING T., WILLEMS P., ARTS J. et al., Novel Radiopaque UHMWPE Sublaminar Wires in a Growth-Guidance System for the Treatment of Early Onset Scoliosis: Feasibility in a Large Animal Study, Spine (Phila. Pa. 1976), 2014.
  • [5] BROŃCZYK A., KOWALEWSKI P., SAMORAJ M., Tribocorrosion behaviour of Ti6Al4V and AISI 316L in simulated normal and inflammatory conditions, Wear, 2019, 434–435, https://doi.org/10.1016/j.wear.2019.202966
  • [6] EL-SAYED A.A., EL-SHERBINY M.G., ABO-EL-EZZ A.S., AGGAG G.A., Friction and wear properties of polymeric composite materials for bearing applications, Wear, 1995, 184, 45–53.
  • [7] FEJDYŚ M., ŁANDWIJT M., Technical fibers reinforcing composite materials (in Polish), Tech. Wyr. Włókiennicze, 2010, 18, 12–22.
  • [8] FRIEDRICH K., LU Z., HAGER A.M., Recent advances in polimer composites’ tribology, Wear, 1995, 190, 139–144.
  • [9] HUMMEL J.M., BOOMKAMP I.S.M., STEUTEN L.M.G., VERKERKE B.G.J., IJZERMAN M.J., Predicting the health economic performance of new non-fusion surgery in adolescent idiopathic scoliosis, J. Orthop. Res., 2012, 30, 1453–1458.
  • [10] IBRAHEM R.A., Friction and wear behaviour of fibre/particles reinforced polyester composites, Int. J. Adv. Mater. Res., 2016, 2, 22–26.
  • [11] JACOBS O., MENTZ N., POEPPEL A., SCHULTE K., Sliding wear performance of HD-PE reinforced by continuous UHMWPE fibres, Wear, 2000, 244, 20–28.
  • [12] KOWALEWSKI P., WIELEBA W., Sliding polymers in the joint alloplastic, Arch. Civ. Mech. Eng., 2007, 7, 107–119, https://doi.org/10.1016/S1644-9665(12)60229-5.
  • [13] KOWALEWSKI P., BROŃCZYK A., WIELEBA W., A tribological test rig for fibres, cables, and plaitings, Tribologia, 2017.
  • [14] KUJAWA M., KOWALEWSKI P., WIELEBA W., The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene, Polymers, (Basel), 2019, 11, 1429.
  • [15] KUMAR P., OKA M., IKEUCHI K., SHIMIZU K., YAMAMURO T., OKUMURA H., KOTOURA Y., Low wear rate of UHMWPE against zirconia ceramic (Y-PSZ) in comparison to alumina ceramic and SUS 316L alloy, J. Biomed. Mater. Res., 1991, 25, 813–828.
  • [16] LI X.Y., DONG H., SHI W., New insights into wear of Ti6Al4V by ultra-high molecular weight polyethylene under water lubricated conditions, Wear, 2001, 250, 553–560.
  • [17] MEIJER G., Development of a non-fusion scoliosis correction device. Numerical modelling of scoliosis correction, 2011.
  • [18] PACH J., FRĄCZEK N., KACZMAR J., The Effects of Hybridisation of Composites Consisting of Aramid, Carbon, and Hemp Fibres in a Quasi-Static Penetration Test, Materials, (Basel), 2020, 13, 4686.
  • [19] RITUERTO SIN J., SUÑER S., NEVILLE A., EMAMI N., Fretting corrosion of hafnium in simulated body fluids, Tribol. Int., 2014, 75, 10–15, https://doi.org/10.1016/j.triboint.2014.03.003.
  • [20] RITUERTO SIN J., HU X., EMAMI N., Tribology, corrosion and tribocorrosion of metal on metal implants, Tribol. – Mater. Surfaces Interfaces, 2013, 7, 1–12, https://doi.org/10.1179/1751584X13Y.0000000022.
  • [21] ROHLMANN A., ZANDER T., BURRA N.K., BERGMANN G., Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: A finite element analysis of different features of orthobiomTM, Eur. Spine J., 2008, 17, 217–223, https://doi.org/10.1007/s00586-007-0480-1.
  • [22] ROTH A.K., BOGIE R., WILLEMS P.C., DE JONG J., VAN DEN BERGH J., ARTS J.J., Novel Radiopaque Uhmwpe Sublaminar Wires in a Growth-guidance System for The Treatment of Early Onset Scoliosis: Feasibility in a Large Animal Model, Spine J., 2002, 11, 137–144.
  • [23] ROTH A.K., BOON-CEELEN K., SMELT H., VAN RIETBERGEN B., WILLEMS P.C., VAN RHIJN L.W., ARTS J.J., Radiopaque UHMWPE sublaminar cables for spinal deformity correction: Preclinical mechanical and radiopacifier leaching assessment, J. Biomed. Mater. Res., Part B, Appl. Biomater., 2018, 106, 771–779.
  • [24] SAMORAJ M., Tribocorrosion tests of materials applied for implants (in Polish), Wrocław University of Science and Technology, 2014.
  • [25] SCHMALZRIED T.P., PETERS P.C., MAURER B.T., BRAGDON C.R., HARRIS W.H., Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces, J. Arthroplasty, 1996, 11, 322–331.
  • [26] SHI W., DONG H., BELL T., Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxidation-treated Ti6Al4V, Mater. Sci. Eng. A., 2000, 291, 27–36.
  • [27] STODOLAK E., Research on surface modification and the influence of fibers on polymeric material and cellular response, Doctoral Thesis, AGH, Kraków 2006 (in Polish).
  • [28] SURESHA B., CHANDRAMOHAN G., SAMAPTHKUMARAN P., SEETHARAMU S., VYNATHEYA S., Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites, J. Reinf. Plast. Compos., 2006, 25, 771–782.
  • [29] WESOŁOWSKA M., DELCZYK-OLEJNICZAK B., Fibers in ballistics – today and tomorrow (in Polish), Tech. Wyr. Włókiennicze, 2011, 41–50.
  • [30] PubCHEM – National Library of Medicine. National Center for Biotechnology Information, (n.d.), https://pubchem.ncbi. nlm.nih.gov/compound/Sodium-lactate (Accessed: November 6, 2020).
  • [31] DailyMed – U.S. NATIONAL LIBRARY OF MEDICINE, (n.d.). https://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=2425 (Accessed: November 6, 2020).
  • [32] chemBlink – Online Database of Chemicals from Around the World, (n.d.). https://www.chemblink.com/products/72-17-3.htm (Accessed: November 6, 2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27d70895-3850-48b2-95bd-928c6d10a16a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.