PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Use Fry of Cyprinus Carpio as Biomarker for Lead and Cadmium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fishes are considered a good biomarker, and bioindicator of pollution, Our current research aims to investigate the magnification of (Pb and Cd) and how both affect antioxidants and use fry carp Cyprinus carpio as a bioindicator. The samples were analyzed to find the possible biomagnification of metals in fish. The highest concentration in fry fish fed with Artemia used Dunaliella salina as food treated with Pb in Food type 1 for 28 days, with a significant difference. The highest concentration of Cd in fry fish fed with Artemia used D. salina as food treated with Cd in food type 1 for 28 days, with a significant difference. The activity of the enzyme (SOD - GSH - CAT– GST) U/gm is affected by toxicity in fry fish mussels. The investigation has proved that exposure of fish to (lead and cadmium) induced a significant increase in content and increased activity of GST U/gm. For this purpose, an aquarium-based trial was conducted with two different types of food treated with Cd and Pb. The highest concentration of SOD U/gm enzyme of fry fish fed with Artemia used D.salina treated with Pb in food type 1 for 28 days when fry fish fed on Artemia used food treated with Pb the results show a strong positive significant correlation between (GPX, with SOD and CAT) U/gm and (SOD, with CAT) U/gm. While the concentration has a positive significant correlation with all enzymes, With Cd the highest concentration was in the SOD U/gm enzyme in fry fish fed with Artemia that used D. salina as food treated with Cd in food type 2 for 28 days.
Twórcy
  • College of Science, University of Babylon, Babylon, Iraq
  • College of Science, University of Babylon, Babylon, Iraq
  • College of Science, University of Babylon, Babylon, Iraq
Bibliografia
  • 1. Abdel-Warith, A.W.A., Younis, E.S.M.I., Al-Asgah, N.A., Rady, A.M., Allam, H.Y. 2020 Bioaccumulation of lead nitrate in tissues and its effects on hematological and biochemical parameters of Clarias gariepinus. Saudi J. Biol. Sci. 27, 840-845. https://doi.org/10.1016/j.sjbs.2020.01.015
  • 2. Aebi, H. 1974. Methods of Enzymatic Analysis. New York, Academic Press, 2, 674-84. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
  • 3. Aebi, H. 1984. Catalase in vitro. In: Packer, L. (Ed.), Methods in enzymology, Academic Press, Orlando, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • 4. Ali, H., Khan, E. 2018. Trophic transfer, bioaccumulation and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs: concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 1353-1376. https://doi.org/10.1080/10807039.2018.1469398
  • 5. Atli, G., Canli, M., 2011. Essential metal (Cu, Zn) exposures alter the activity of ATPases in the gill, kidney, and muscle of tilapia Oreochromis niloticus. Ecotoxicology, 20(8), 1861-1869. https://doi.org/10.1007/s10646-011-0724-z
  • 6. Atli, G., Canli, E., Eroglu, A., Dogan, Z., Canli, M., 2016. Cadmium and lead alter the antioxidant and osmoregulation systems in the erythrocyte of fish (Oreochromis niloticus). Turk. J. Fish. Aquat. Sci., 16, 361-369. https://doi.org/10.4194/1303-2712-v16_2_16
  • 7. Claiborne, A. 1985. Catalase activity. In: CRC Handbook of Methods for Oxygen Radical Research, Greenwald RA (ed.), Boca Raton, FL, pp. 283-284. https://doi.org/10.1093/aob/mcv153
  • 8. Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem, 1, 529-539. https://doi.org/10.2174/1568026013394831
  • 9. Habig, W.H., Pabst, M.J., Jokoby, W.B. 1974. Glutathione S-transferase. The first enzyme step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8
  • 10. Hafemann, D.G., Sunde, R.A., Houestra, W.G. 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutri., 104, 580-584. https://doi.org/10.1093/jn/104.5.580
  • 11. Ikeogu, C.F., Nsofor, C.I., Igwilo, I.O., Ngene, A.A. 2016. Haematological and serological responses of clarias gariepinus to sublethal concentrations of lead nitrate. J. Pharm. Sci. Biosci. Res.
  • 12. Zulfahmi, I., Rahmi, A., Muliari, M., Akmal, Y., Paujiah, E., Sumon, K.A., Rahman, M.M. 2021 Exposure to lead nitrate alters growth and haematological parameters of Milkfish (Chanos chanos) Bull. Environ. Contam. Toxicol., 107, 860-867. https://doi.org/10.1007/s00128-021-03344-y
  • 13. Kalisinska, E., Lanocha-Arendarczyk, N., Kosik-Bogacka, D., Budis, H., Pilarczyk, B., Tomza-Marciniak, A., Podlasinska, J., Cieslik, L., Popiolek, M., Pirog, A., Jedrzejewska E. 2017 Muscle mercury and selenium in fishes and semiaquatic mammals from a selenium-deficient area. Ecotoxicology and Environmental Safety, 136, 24-30.https://doi.org/10.1016/j.ecoenv.2016.10.028
  • 14. Khan, M.U., Ahmed, M., Nazim, K., Hussain, S.E. 2022. Bioaccumulation of heavy metals in Poecilia reticulata (guppy fish): an important biotic component of food chain. J. Black Sea/Mediterranean Environment, 28(1), 97-110.
  • 15. Muhammad, A., Saman, H., Iram, L., Amir, A.A.K., Hafiz, A.M., Raja, S., Muhammad, A. 2022. Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Practice and Technology, 17(5), 1254. https://doi.org/10.2166/wpt.2022.039
  • 16. Farhan, J.E., Md, F.R., Nusrat, S., Mst, F.T.J., Yeasmin, A., Md S., Zulhisyam, A.K., Albaris B. T. and Khang W.G. 2023, Bioaccumulation and bioremediation of heavy metals in fishes toxics, 11, 510. https://doi.org/10.3390/toxics11060510
  • 17. Medhat, H.K., Mohsen, S.H., Salwa, M.A., Mostafa, I.B., Ibrahim E.E.E. 2017 Biochemical and histological changes of grass carp (ctenopharyngodon idella Val.) induced by exposure to rice straw. African J. Biol. Sci., 13(1), 179-196. https://doi.org/10.21608/ajbs.2017.68647
  • 18. Marklund, S., Marklund, G. 1974 Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  • 19. Olatunji-Ojo, A.M., Alimba, C.G., Adenipekun, C.O., Bakare, A.A. 2020. Experimental simulation of somatic and germ cell genotoxicity in male Mus musculus fed extracts of lead contaminated Pleurotus ostreatus (white rot fungi). Environmental Sciences and Pollution Research 27, 19754-19763. https://doi.org/10.1007/s11356-020-08494-w
  • 20. Pinto, E., Sigaud-kutner, T.C.S., Leit ̃ao, M.A.S., Okamoto, O.K., Morse, D., Colepicolo, P., 2003. Heavy metal–induced oxidative stress in algae. J. Phycol. 39(6), 1008-1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x
  • 21. Rashed M.N., 2001. Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Springer link, Environmental Monitoring and Assessment, 68, 75-89. https://doi.org/10.1023/A:1010739023662
  • 22. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., Hoekstra, W.G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, New Series, 179, 588- 590. https://doi.org/10.1126/science.179.4073.588
  • 23. Schmitt, C.J., Finger, S.E. 1987. The effects of sample preparation on measured concentrations of eight elements in edible tissues of fish from streams contaminated by lead mining. Arch Environ Contam Toxicol, 16, 185-207. https://doi.org/10.1007/BF01055800
  • 24. Sevcikova, M., Modra, H., Slaninova, A., Svobodova, Z. 2011. Metals as a cause of oxidative stress in fish: a review. Veterinarni Medicina, 56, 537-546. https://doi.org/10.17221/4272-VETMED
  • 25. Tanhana, P., Imsilpa, K., Lansubsakula, N., Thongasab, W. 2023. Oxidative response to Cd and Pb accumulation in coastal fishes of Pattani Bay. Italian Journal of Animal Science, 22(1), 148-156. https://doi.org/10.1080/1828051X.2023.2166430
  • 26. Ullah, A.A., Maksud, M.A., Khan, S.R., Lutfa, L.N., Quraishi, S.B., 2017. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. https://doi.org/10.1016/j.toxrep.2017.10.002
  • 27. Ullah, S. , Li, Z., Hassan, S., Ahmad, S., Guo, X. , Wanghe, K., Nabi G. 2021. Heavy metals bioaccumulation and subsequent multiple biomarkers based appraisal of toxicity in the critically endangered Tor putitora., 228, 113032. https://doi.org/10.1016/j.ecoenv.2021.113032
  • 28. Vardi, V., Chenji, V. 2020. Bioaccumulation of heavy metals in edible marine fish from coastal areas of Nellore, Andhra Pradesh, India. GSC Biological and Pharmaceutical Sciences, 10(01), 18-24. https://doi.org/10.30574/gscbps.2020.10.1.0244
  • 29.Jun-Hwan K., Ju-Chan K. 2015. The lead accumulation and hematological findings in juvenile rock fish Sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicology and Enveronmental Safety, 115(May), 33-39. https://doi.org/10.1016/j.ecoenv.2015.02.009
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27d5f179-2e82-4c20-819b-38f2b1268ed7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.