PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent progress in optical devices for mode division multiplex transmission system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The idea of adopting the space domain as the next frontier for optical communication has received increasing attention in the last few years. Optical devices are the integral parts of a mode division multiplexing (MDM) transmission. Therefore, conducting an intensive study on the devices is paramount to the successful realization of the overall system. This paper presents a review of the recent advances in the inline components of an MDM system, consisting of mode converters, spatial (de) multiplexers, optical amplifiers, and few-mode fibers (FMFs). Also presented are different mode conversion and multiplexing schemes. Recent techniques of minimizing differential mode gain (DMG) in the optical amplifiers are also reviewed. The review covers other types of amplification schemes and their current standing in the MDM system. These include optical semiconductor amplifiers (OSAs), and the Raman amplifiers (RAs). Finally, the review also highlights the role of FMF, multicore fiber and their relationship with fan-in/fan-out devices.
Rocznik
Strony
252--267
Opis fizyczny
Bibliogr. 129 poz., wykr., rys., tab., fot.
Twórcy
autor
  • Applied Electromagnetics and Telecommunication Research Group, University of Nottingham (UNM), Affiliated to the George Green Institute for Electromagnetics Research, Nottingham, United Kingdom
  • Department of Electrical and Electronics Engineering, University of Nottingham (UNM), Malaysia
autor
  • Department of Electrical and Electronics Engineering, University of Nottingham (UNM), Malaysia
  • Department of Electrical Engineering, California Polytechnic State University, San Luis Obispo, CA, 93405, USA
Bibliografia
  • [1] A. Malekmohammadi, G.A. Mahdiraji, A.F. Abas, M.K. Abdullah, M. Mokhtar, M.F.A. Rasid, Effect of self-phase-modulation on dispersion compensated absolute polar duty cycle division multiplexing transmission, IET Optoelectron. 3 (2009) 207–214, http://dx.doi.org/10.1049/iet-opt.2009.0008.
  • [2] A. Malekmohammadi, M.K. Abdullah, A.F. Abas, G.A. Mahdiraji, M. Mokhtar, Absolute polar duty cycle division multiplexing (APDCDM); technique for wireless communications, Int. Conf. on Computer and Communication Engineering (2008) 617–620, http://dx.doi.org/10.1109/ICCCE.2008.4580678.
  • [3] G.A. Mahdiraji, M.K. Abdullah, M. Mokhtar, A. Malekmohammadi, A.F. Abas, Duty-cycle-division-multiplexing: bit error rate estimation and performance evaluation, Opt. Rev. 16 (2009) 422–425.
  • [4] E.N. Pencheva, Multimedia broadcasting in multi-access edge computing, 2017 13th Int. Conf. Adv. Technol. Syst. Serv. Telecommun. (2017) 57–60, http://dx.doi.org/10.1109/TELSKS.2017.8246227.
  • [5] A. Malekmohammadi, M.K. Abdullah, G.A. Mahdiraji, A.F. Abas, M. Mokhtar, M.F.A. Rasid, S.M. Basir, Decision circuit and bit error rate estimation for absolute polar duty cycle division multiplexing, Int. Rev. Electr. Eng.-IREE 3 (2008) 592–599.
  • [6] P.J. Winzer, Spatial multiplexing in fiber optics: the scaling of metro/core capacities, Bell Labs Tech. J. 19 (2014) 22–30, http://dx.doi.org/10.15325/BLTJ.2014.2347431.
  • [7] A. Malekmohammadi, G.A. Mahdiraji, M.K. Abdullah, A.F. Abas, A. Mokhtar, M.F.A. Rasid, Absolute polar duty cycle division multiplexing techniquedoi, Int. Rev. Electr. Eng.-IREE 3 (2008) 395–400.
  • [8] T.A. Eriksson, E. Agrell, M. Karlsson, in: G. Li, X. Zhou (Eds.), Multidimensional Modulation Formats for Coherent Optical Communications, 2016, p. 977403, http://dx.doi.org/10.1117/12.2210827.
  • [9] S. Jain, V.J.F. Rancano, T.C. May-Smith, P. Petropoulos, J.K. Sahu, D.J. Richardson, Multi-element fiber for space-division multiplexed optical communication system, Int. Conf. Transparent Opt. Networks (2014) 6–9, http://dx.doi.org/10.1109/ICTON.2014.6876672.
  • [10] B.J. Puttnam, J. Sakaguchi, W. Klaus, Y. Awaji, J.M. Delgado Mendinueta, N. Wada, A. Kanno, T. Kawanishi, Investigating self-homodyne coherent detection in a 19-core spatial-division-multiplexed transmission link, Eur. Conf. Exhib. Opt. Commun. 21 (2012), http://dx.doi.org/10.1364/ECEOC. 2012.Tu.3.C.3, Tu.3.C.3.
  • [11] T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, K. Nakajima, Few-mode fiber technology for mode division multiplexing, Opt. Fiber Technol. 35 (2017) 37–45, http://dx.doi.org/10.1016/j.yofte.2016.07.011.
  • [12] T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, K. Nakajima, Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems, Opt. Fiber Technol. 35 (2017) 8–18, http://dx.doi.org/10.1016/j.yofte.2016.07.010.
  • [13] G.A. Mahdiraji, A.F. Abas, M.K. Abdullah, A. Malekmohammadi, M. Mokhtar, Duty-cycle division multiplexing: alternative for high speed optical networks, J. Appl. Phys. 48 (2009), 09LF03.
  • [14] K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, M. Suzuki, 114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers, Opt. Fiber Commun. Conf. Post Deadline Pap. (2015) Th5C.4, http://dx.doi.org/10.1364/OFC.2015.Th5C.4.
  • [15] Z. Chen, Y. Zhu, X. Ruan, Y. Li, Y. Li, F. Zhang, Bridged coupler and oval mode converter based silicon mode division (De)multiplexer and terabit WDM-MDM system demonstration, J. Lightwave Technol. 36 (2018) 2757–2766, http://dx.doi.org/10.1109/JLT.2018.2818793.
  • [16] Z. Chen, Y. Zhu, X. Ruan, Y. Li, Y. Li, F. Zhang, Bridged coupler and oval mode converter based silicon mode division (De)multiplexer and terabit WDM-MDM system demonstration, J. Lightwave Technol. 36 (2018) 2757–2766, http://dx.doi.org/10.1109/JLT.2018.2818793.
  • [17] C. Shuai, C. Gao, Y. Nie, H. Hu, S. Peng, Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater, Opt. Fiber Technol. 17 (2011) 541–545, http://dx.doi.org/10.1016/j.yofte.2011.06.015.
  • [18] H. Sakata, H. Sano, T. Harada, Optical Fiber Technology Tunable mode converter using electromagnet-induced long-period grating in two-mode fiber, Opt. Fiber Technol. 20 (2014) 224–227, http://dx.doi.org/10.1016/j.yofte.2014.02.003.
  • [19] T. Uematsu, N. Hanzawa, K. Saitoh, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, F. Yamamoto, PLC-type LP11 mode rotator with single-trench waveguide for mode-division multiplexing transmission, Opt. Fiber Commun. Conf. (2014) Th2A.52, http://dx.doi.org/10.1364/OFC.2014.Th2A.52.
  • [20] R.I. Sabitu, A. Malekmohammadi, Mode conversion based on lateral misalignment between two multi-ring core fibers for MDM system, J. Opt. Commun. (2019) 1–10, http://dx.doi.org/10.1515/joc-2018-0175.
  • [21] M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, G. Charlet, Mode-division multiplexing of 2×100 Gb/s channels using an LCOS-based spatial modulator, J. Lightwave Technol. 30 (2012) 618–623, http://dx.doi.org/10.1109/JLT.2011.2178394.
  • [22] R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E.C. Burrows, R.J. Essiambre, P.J. Winzer, D.W. Peckham, A.H. McCurdy, R. Lingle, Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing, J. Lightwave Technol. 30 (2012) 521–531, http://dx.doi.org/10.1109/JLT.2011.2174336.
  • [23] Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, T. Wang, All-fiber mode converter based on long-period fiber gratings written in few-mode fiber, Opt. Lett. 42 (2017) 4708, http://dx.doi.org/10.1364/OL.42.004708.
  • [24] Y. Cao, Y. Zhao, X. Yu, Q. Ou, Z. Liu, X. Liao, J. Zhang, Mode conversion-based crosstalk-aware routing, spectrum and mode assignment in space-division multiplexing elastic optical networks, 2017 16th Int. Conf. Opt. Commun. Networks (2017) 1–3, http://dx.doi.org/10.1109/ICOCN.2017.8121478.
  • [25] M. Lan, L. Gao, S. Yu, S. Nie, S. Cai, X. Qi, Z. Du, C. Ma, W. Gu, An arbitrary mode converter with high precision for mode division multiplexing in optical fibers, J. Mod. Opt. 62 (2015) 348–352, http://dx.doi.org/10.1080/09500340.2014.982223.
  • [26] D. Garcia-Rodriguez, J.L. Corral, R. Llorente, Mode conversion for mode division multiplexing at 850 nm in standard SMF, IEEE Photonics Technol. Lett. 29 (2017) 929–932, http://dx.doi.org/10.1109/LPT.2017.2694605.
  • [27] H. Mellah, X. Zhang, D. Shen, Analysis of optical fiber-based LP 01↔LP 02 mode converters for the O-, S-, and C-Band, Appl. Opt. 54 (2015) 5568, http://dx.doi.org/10.1364/AO.54.005568.
  • [28] Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, F. Ren, Q. Mo, J. Yu, Z. Li, Z. Chen, Y. He, Fundamental-mode MMF transmission enabled by mode conversion, Opt. Commun. 410 (2018) 112–116, http://dx.doi.org/10.1016/j.optcom.2017.09.073.
  • [29] H. Mellah, J.-P. Bérubé, R. Vallée, X. Zhang, Fabrication of a LP 01 to LP 02 mode converter embedded in bulk glass using femtosecond direct inscription, Opt. Commun. 410 (2018) 475–478, http://dx.doi.org/10.1016/j.optcom.2017.10.054.
  • [30] D. Shen, C. Ma, C. Wan, H. Yuan, X. Zhang, A new LP01/LP02 Mode converter in mode division multiplexing, 2017 16th Int. Conf. Opt. Commun. Networks (2017) 1–3, http://dx.doi.org/10.1109/ICOCN.2017.8121388.
  • [31] D. Pérez-Galacho, C. Alonso-Ramos, D. Marris-Morini, V. Vakarin, X. Le Roux, L. Vivien, Mode converters based on periodically perturbed waveguides for mode division multiplexing, in: R.G. Baets, P. O’Brien, L. Vivien (Eds.), Silicon Photonics From Fundam. Res. to Manuf., SPIE, 2018, p. 26, http://dx.doi.org/10.1117/12.2307700.
  • [32] Y. Gao, J. Sun, G. Chen, C. Sima, Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings, Opt. Express 23 (2015) 9959, http://dx.doi.org/10.1364/OE.23.009959.
  • [33] K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, M. Suzuki, 114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers, Opt. Fiber Commun. Conf. Post Deadline Pap. (2015) Th5C.4, http://dx.doi.org/10.1364/OFC.2015.Th5C.4.
  • [34] R. Ryf, N.K. Fontaine, H. Chen, B. Guan, B. Huang, M. Esmaeelpour, A.H. Gnauck, S. Randel, S.J.B. Yoo, A.M.J. Koonen, R. Shubochkin, Y. Sun, R. Lingle, Mode-multiplexed transmission over conventional graded-index multimode fibers, Opt. Express 23 (2015) 235, http://dx.doi.org/10.1364/OE.23.000235.
  • [35] P. Genevaux, C. Simonneau, G. Labroille, B. Denolle, O. Pinel, P. Jian, J. Morizur, G. Charlet, 6-mode spatial multiplexer with low loss and high selectivity for transmission over few Mode fiber, Opt. Fiber Commun. Conf. (2015), http://dx.doi.org/10.1364/OFC.2015.W1A.5, W1A.5.
  • [36] K. Igarashi, D. Souma, T. Tsuritani, I. Morita, Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber, Opt. Express 22 (2014) 20881, http://dx.doi.org/10.1364/OE.22.020881.
  • [37] R. Talib, M.F.L. Abdullah, A. Malekmohammadi, M.K. Abdullah, Multi-slot and multi-level coding technique over amplitude-shift keying modulation for optical communication links, in: 16th European Conference on Networks and Optical Communications, 2011, pp. 161–164.
  • [38] Y. Han, G. Hu, A novel MUX/DEMUX based on few-mode FBG for mode division multiplexing system, Opt. Commun. 367 (2016) 161–166, http://dx.doi.org/10.1016/j.optcom.2016.01.015.
  • [39] Mohamed A. Elsherif, A. Malekmohammadi, Performance enhancement of mapping multiplexing technique utilising dual-drive Mach–Zehnder modulator for metropolitan area networks, Iet Optoelectron. 9 (2014) 108–115, http://dx.doi.org/10.1049/iet-opt.2014.0033.
  • [40] S. Yerolatsitis, I. Gris-Sánchez, T.A. Birks, Adiabatically-tapered fiber mode multiplexers, Opt. Express 22 (2014) 608, http://dx.doi.org/10.1364/OE.22.000608.
  • [41] A.M. Velazquez-Benitez, J.C. Alvarado, G. Lopez-Galmiche, J.E. Antonio-Lopez, J. Hernández-Cordero, J. Sanchez-Mondragon, P. Sillard, C.M. Okonkwo, R. Amezcua-Correa, Six mode selective fiber optic spatial multiplexer, Opt. Lett. 40 (2015) 1663, http://dx.doi.org/10.1364/OL.40.001663.
  • [42] K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, K. Nakajima, PLC-based mode multi/demultiplexers for mode division multiplexing, Opt. Fiber Technol. 35 (2017) 80–92, http://dx.doi.org/10.1016/j.yofte.2016.08.002.
  • [43] K. Igarashi, K.J. Park, T. Tsuritani, I. Morita, B.Y. Kim, All-fiber-based selective mode multiplexer and demultiplexer for weakly-coupled mode-division multiplexed systems, Opt. Commun. 408 (2018) 58–62, http://dx.doi.org/10.1016/j.optcom.2017.08.049.
  • [44] T. Fujisawa, Y. Yamashita, T. Sakamoto, T. Matsui, K. Tsujikawa, K. Nakajima, K. Saitoh, Scrambling-type three-mode PLC multiplexer based on cascaded Y-Branch waveguide with integrated mode rotator, J. Lightwave Technol. 36 (2018) 1985–1992, http://dx.doi.org/10.1109/JLT.2018.2798619.
  • [45] D. Melati, A. Alippi, A. Melloni, Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission, Opt. Express 24 (2016) 12625, http://dx.doi.org/10.1364/OE.24.012625.
  • [46] J. Li, F. Ren, T. Hu, Z. Li, Y. He, Z. Chen, Q. Mo, G. Li, Recent progress in mode-division multiplexed passive optical networks with low modal crosstalk, Opt. Fiber Technol. 35 (2017) 28–36, http://dx.doi.org/10.1016/j.yofte.2016.08.001.
  • [47] W.K. Zhao, K.X. Chen, J.Y. Wu, K.S. Chiang, Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing, IEEE Photonics J. 9 (2017) 1–9, http://dx.doi.org/10.1109/JPHOT.2017.2731046.
  • [48] G. Labroille, N. Barré, O. Pinel, B. Denolle, K. Lenglé, L. Garcia, L. Jaffrès, P. Jian, J.-F. Morizur, Characterization and applications of spatial mode multiplexers based on Multi-Plane Light Conversion, Opt. Fiber Technol. 35 (2017) 93–99, http://dx.doi.org/10.1016/j.yofte.2016.09.005.
  • [49] M.Y. Chen, G.D. Cao, L. Yang, Y.Q. Tong, J.Q. Yao, Design of mode conversion waveguides based on adiabatical mode evolution for mode division multiplexing, Appl. Phys. B Lasers Opt. 123 (2017) 1–9, http://dx.doi.org/10.1007/s00340-017-6833-5.
  • [50] K. Chen, Z. Nong, J. Zhang, X. Cai, S. He, L. Liu, Multimode 3 dB coupler based on symmetrically coupled waveguides for on-chipbrk mode division multiplexing, J. Lightwave Technol. 35 (2017) 4260–4267, http://dx.doi.org/10.1109/JLT.2017.2735860.
  • [51] J. Dong, K.S. Chiang, W. Jin, Compact three-dimensional polymer waveguide mode multiplexer, J. Lightwave Technol. 33 (2015) 4580–4588, http://dx.doi.org/10.1109/JLT.2015.2478961.
  • [52] H. Huang, G. Milione, M.P.J. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D.A. Nolan, M.-J. Li, M. Tur, R.R. Alfano, A.E. Willner, Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre, Sci. Rep. 5 (2015) 14931, http://dx.doi.org/10.1038/srep14931.
  • [53] N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, T. Uematsu, F. Yamamoto, PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip, J. Lightwave Technol. 33 (2015) 1161–1165, http://dx.doi.org/10.1109/JLT.2014.2378281.
  • [54] B. Bouzid, Analysis and review of erbium doped fiber amplifier, 2013 Saudi Int. Electron. Commun. Photonics Conf. (2013) 1–5, http://dx.doi.org/10.1109/SIECPC.2013.6551005.
  • [55] C.H. Henry, Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers, J. Lightwave Technol. 4 (1986) 288–297, http://dx.doi.org/10.1109/JLT.1986.1074715.
  • [56] L. Bigot, G. Le Cocq, Y. Quiquempois, Few-mode erbium-doped Fiber amplifiers: a review, J. Lightwave Technol. 33 (2015) 588–596, http://dx.doi.org/10.1109/JLT.2014.2376975.
  • [57] N. Bai, E. Ip, T. Wang, G. Li, Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump, IEEE Photonic Soc. 24th Annu. Meet. PHO 2011 3 (2011) 589–590, http://dx.doi.org/10.1109/PHO.2011.6110685.
  • [58] G.A. Mahdiraji, M.K. Abdullah, M. Mokhtar, A. Malek Mohammadi, A.F. Abas, S.M. Basir, R.S.A.R. Abdullah, 70-Gb/s amplitude-shift-keyed system with 10-GHz clock recovery circuit using duty cycle division multiplexing, Photonic Netw. Commun. 19 (2010) 233–239.
  • [59] N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Li ˜nares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A.P.T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, T. Wang, Mode-division multiplexed transmission with inline few-mode fiber amplifier, Opt. Express 20 (2012) 2668, http://dx.doi.org/10.1364/OE.20.002668.
  • [60] M. Wada, T. Sakamoto, T. Mori, N. Hanzawa, T. Yamamoto, F. Yamamoto, Modal gain controllable all-fiber type multimode fiber amplifier, in: Optoelectron. Commun. Conf. Photonics Switch 2013, 2013, pp. 14–15.
  • [61] Q. Kang, E.L. Lim, Y. Jung, F. Poletti, S. Alam, D.J. Richardson, Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions, Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. (2013) OTu3G.3, http://dx.doi.org/10.1364/OFC.2013. OTu3G.3.
  • [62] P. Genevaux, C. Simonneau, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, G. Charlet, A five-mode erbium-doped fiber amplifier for mode-division multiplexing transmission, J. Lightwave Technol. 34 (2016) 456–462, http://dx.doi.org/10.1109/JLT.2015.2481082.
  • [63] G. Le Cocq, Y. Quiquempois, A. Le Rouge, G. Bouwmans, H. El Hamzaoui, K. Delplace, M. Bouazaoui, L. Bigot, Few mode Er^3+-doped fiber with micro-structured core for mode division multiplexing in the C-band, Opt. Express 21 (2013) 31646, http://dx.doi.org/10.1364/OE.21.031646.
  • [64] Y. Jung, Q. Kang, J.K. Sahu, B. Corbett, J. O’Callagham, F. Poletti, S.-U. Alam, D.J. Richardson, Reconfigurable modal gain control of a few-mode EDFA supporting six spatial modes, IEEE Photonics Technol. Lett. 26 (2014) 1100–1103, http://dx.doi.org/10.1109/LPT.2014.2315500.
  • [65] S. Wittek, R. Bustos Ramirez, J. Alvarado Zacarias, Z. Sanjabi Eznaveh, J. Bradford, G. Lopez Galmiche, D. Zhang, W. Zhu, J. Antonio-Lopez, L. Shah, R. Amezcua Correa, Mode-selective amplification in a large mode area Yb-doped fiber using a photonic lantern, Opt. Lett. 41 (2016) 2157, http://dx.doi.org/10.1364/OL.41.002157.
  • [66] G. Lopez-Galmiche, Z. Sanjabi Eznaveh, J.E. Antonio-Lopez, A.M. Velazquez-Benitez, J. Rodriguez-Asomoza, L.A. Herrera-Piad, J.J. Sanchez-Mondragon, C. Gonent, P. Sillard, G. Li, A. Sch ¨ ulzgen, C. Okonkwo, R. Amezcua Correa, in: G. Li, X. Zhou (Eds.), Gain-Controlled Erbium-Doped Fiber Amplifier Using Mode-Selective Photonic Lantern, 2016, 97740P, http://dx.doi.org/10.1117/12.2214483.
  • [67] S. Matsuo, H. Ono, K. Ichii, M. Yamada, T. Hosokawa, Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre, Electron. Lett. 51 (2015) 172–173, http://dx.doi.org/10.1049/el.2014.3411.
  • [68] H. Chen, C. Jin, B. Huang, N.K. Fontaine, R. Ryf, K. Shang, N. Grégoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, S. LaRochelle, Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications, Nat. Photonics 10 (2016) 529–533, http://dx.doi.org/10.1038/nphoton.2016.125.
  • [69] H. Ono, Y. Amma, T. Hosokawa, M. Yamada, Recent progress on few-mode fiber amplifier, 2016 IEEE Photonics Soc. Summer Top. Meet. Ser. (2016) 74–75, http://dx.doi.org/10.1109/PHOSST.2016.7548734.
  • [70] H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, M. Yamada, 2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber, Opt. Express 23 (2015) 27405, http://dx.doi.org/10.1364/OE.23.027405.
  • [71] A.F. Herbster, M.A. Romero, Rigorous and optimized few-mode erbium-doped fiber amplifier design by using topology optimization and genetic algorithms, Opt. Eng. 56 (2017), 046102, http://dx.doi.org/10.1117/1.OE.56.4.046102.
  • [72] J.-B. Trinel, G. Le Cocq, Y. Quiquempois, E.R. Andresen, O. Vanvincq, L. Bigot, Theoretical study of gain-induced mode coupling and mode beating in few-mode optical fiber amplifiers, Opt. Express 25 (2017) 2377, http://dx.doi.org/10.1364/OE.25.002377.
  • [73] J. Li, J. Du, L. Ma, M.-J. Li, K. Xu, Z. He, Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems, Opt. Express 25 (2017) 810, http://dx.doi.org/10.1364/OE.25.000810.
  • [74] J.-B. Trinel, Y. Quiquempois, A. Le Rouge, G. Le Cocq, L. Garcia, J.-F. Morizur, G. Labroille, L. Bigot, Amplification sharing of non-degenerate modes in an elliptical-core few-mode erbium-doped fiber, Opt. Express 24 (2016) 4654, http://dx.doi.org/10.1364/OE.24.004654.
  • [75] A. Gaur, V. Rastogi, Gain equilization of six mode groups using trench-assisted annular core EDFA, Work. Recent Adv. Photonics (2015) 1–4, http://dx.doi.org/10.1109/WRAP.2015.7805967.
  • [76] E.L. Lim, Y. Jung, Q. Kang, T.C. May-Smith, N.H.L. Wong, R. Standish, F. Poletti, J.K. Sahu, S. Alam, D.J. Richardson, First demonstration of cladding pumped few-moded EDFA for mode division multiplexed transmission, Conf. Opt. Fiber Commun. Tech. Dig. Ser. 22 (2014) 29008–29013, http://dx.doi.org/10.1109/OFC.2014.6886562.
  • [77] Y. Jung, P.C. Shardlow, M. Belal, Z. Li, A.M. Heidt, J.M.O. Daniel, D. Jain, J.K. Sahu, W.A. Clarkson, B. Corbett, J. O’Callaghan, S.U. Alam, D.J. Richardson, Few-mode TDFA for mode division multiplexing at 2m, Proc. - 2014 Summer Top. Meet. Ser. SUM 2014 22 (2014) 152–153, http://dx.doi.org/10.1109/SUM.2014.85.
  • [78] A.W. Setiawan Putra, M. Yamada, S. Ambran, T. Maruyama, Theoretical comparison of noise characteristics in semiconductor and Fiber optical amplifiers, IEEE Photonics Technol. Lett. 30 (2018) 756–759, http://dx.doi.org/10.1109/LPT.2018.2816017.
  • [79] K. Rottwitt, S.M.M. Friis, M.A.U. Castaneda, E.N. Christensen, J.G. Kofoed, Higher order mode optical fiber raman amplifiers, 2016 18th Int. Conf. Transparent Opt. Networks (2016) 1–4, http://dx.doi.org/10.1109/ICTON.2016.7550315.
  • [80] Z. Feng, C. Li, S. Xu, X. Huang, C. Yang, K. Zhou, J. Gan, H. Deng, Z. Yang, Significant intensity noise suppression of single-frequency fiber laser via cascading semiconductor optical amplifier, Laser Phys. Lett. 12 (2015), 095101, http://dx.doi.org/10.1088/1612-2011/12/9/095101.
  • [81] M. Yamada, Analysis of intensity and frequency noises in semiconductor optical amplifier, IEEE J. Quantum Electron. 48 (2012) 980–990, http://dx.doi.org/10.1109/JQE.2012.2197732.
  • [82] A.W. Setiawan Putra, M. Yamada, H. Tsuda, S. Ambran, Theoretical analysis of noise in erbium doped fiber amplifier, IEEE J. Quantum Electron. 53 (2017) 1–8, http://dx.doi.org/10.1109/JQE.2017.2717703.
  • [83] H. Wen, Y. Alahmadi, P. LiKamWa, C. Xia, C. Carboni, G. Li, Invited article: four-mode semiconductor optical amplifier, Apl Photonics 1 (2016), 070801, http://dx.doi.org/10.1063/1.4955178.
  • [84] R.I. Sabitu, N. Dong-Nhat, A. Malekmohammadi, High dispersion four-mode fiber for mode-division multiplexing systems, Optik (Stuttg) 181 (2019) 1–12, http://dx.doi.org/10.1016/j.ijleo.2018.12.008.
  • [85] G. Rademacher, R. Ryf, N.K. Fontaine, H. Chen, R.-J. Essiambre, B.J. Puttnam, R.S. Luis, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, R. Lingle, Long-haul transmission over few-mode fibers with space-division multiplexing, J. Lightwave Technol. 36 (2018) 1382–1388, http://dx.doi.org/10.1109/JLT.2017.2786671.
  • [86] Y. Sasaki, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Few-mode multicore fibers for long-haul transmission line, Opt. Fiber Technol. 35 (2017) 19–27, http://dx.doi.org/10.1016/j.yofte.2016.09.017.
  • [87] M. Bigot-Astruc, D. Boivin, P. Sillard, Design and fabrication of weakly-coupled few-modes fibers, 2012 IEEE Photonics Soc. Summer Top. Meet. Ser. PSST 2012 1 (2012) 189–190, http://dx.doi.org/10.1109/PHOSST.2012.6280766.
  • [88] S.Ö. Arik, D. Askarov, J.M. Kahn, Effect of mode coupling on signal processing complexity in mode-division multiplexing, J. Lightwave Technol. 31 (2013) 423–431, http://dx.doi.org/10.1109/JLT.2012.2234083.
  • [89] S. Chebaane, H. Seleem, H. Fathallah, M. Machhout, Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks, 2015 Int. Conf. Inf. Commun. Technol. Res. ICTRC 2015 (2015) 262–265, http://dx.doi.org/10.1109/ICTRC.2015.7156472.
  • [90] C.R. Doerr, H. Kogelnik, Dielectric waveguide theory, J. Lightwave Technol. 26 (2008) 1176–1187, http://dx.doi.org/10.1109/JLT.2008.923632.
  • [91] Theory of Dielectric Optical Waveguides, second edition, 2019, Dietrich Marcuse: 9780123941855: Amazon.com: Books, (n.d.).
  • [92] R. Ryf, R.J. Essiambre, S. Randel, A.H. Gnauck, P.J. Winzer, T. Hayashi, T. Taru, T. Sasaki, MIMO-based crosstalk suppression in spatially multiplexed 3? ? 56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber, IEEE Photonics Technol. Lett. 23 (2011) 1469–1471, http://dx.doi.org/10.1109/LPT.2011.2162826.
  • [93] D. Rafique, S. Sygletos, A.D. Ellis, Impact of power allocation strategies in long-haul few-mode fiber transmission systems, Opt. Express 21 (2013) 10801, http://dx.doi.org/10.1364/OE.21.010801.
  • [94] S. Mumtaz, R.-J. Essiambre, G.P. Agrawal, Nonlinear propagation in multimode and multicore fibers: generalization of the manakov equations, J. Lightwave Technol. 31 (2013) 398–406, http://dx.doi.org/10.1109/JLT.2012.2231401.
  • [95] P. Sillard, D. Molin, M. Bigot-Astruc, K. de Jongh, F. Achten, J. Antonio-Lopez, R. Amezcua Correa, Micro-bend-resistant low-differential-mode-group-delay few-mode fibers, J. Lightwave Technol. 8724 (2016) 1, http://dx.doi.org/10.1109/JLT.2016.2594586.
  • [96] S. Randel, R. Ryf, A. Sierra, P.J. Winzer, A.H. Gnauck, C.A. Bolle, R.-J. Essiambre, D.W. Peckham, A. McCurdy, R. Lingle, 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization, Opt. Express 19 (2011) 16697, http://dx.doi.org/10.1364/OE.19.016697.
  • [97] P. Sillard, Scalability of few-mode fibers for mode-division-multiplexed systems, IEEE Photonics Conf. (2014) 520–521, http://dx.doi.org/10.1109/IPCon.2014.6995479.
  • [98] F.M. Ferreira, D. Fonseca, H.J.A. Da Silva, Design of few-mode fibers with M-modes and low differential mode delay, J. Lightwave Technol. 32 (2014) 353–360, http://dx.doi.org/10.1109/JLT.2013.2293066.
  • [99] S. Nishimoto, T. Fujisawa, Y. Sasaki, H. Uemura, K. Saitoh, Theoretical investigation of six-mode multi/demultiplexer based on fused-type multicore fiber coupler, IEEE Photonics J. 8 (2016) 1–8, http://dx.doi.org/10.1109/JPHOT.2016.2559438.
  • [100] R. Asif, Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications, Sci. Rep. 6 (2016) 27465, http://dx.doi.org/10.1038/srep27465.
  • [101] C. Xia, M. Ajgaonkar, W. Rosenkranz, Combination of optical and electrical compensation of differential mode delay in MMF links for 10-gigabit ethernet, in: C.F. Lam, W. Gu, N. Hanik, K. Oguchi (Eds.), Opt. Transm. Switch. Subsystems II, 2005, p. 77, http://dx.doi.org/10.1117/12.573757.
  • [102] W. Shieh, A. Li, A. Al Amin, X. Chen, Space division multiplexing: MIMO and multimode fiber communications, J. Light. Technol. 26 (2012) 5.
  • [103] G. Milione, E. Ip, M.-J. Li, J. Stone, G. Peng, T. Wang, Spatial Mode analysis of an elliptical-core, few-mode, optical fiber for MIMO-less space-division-multiplexing, Opt. Fiber Commun. Conf. (2016) W1F.3, http://dx.doi.org/10.1364/OFC.2016.W1F.3.
  • [104] S.Ö. Arik, J.M. Kahn, K.P. Ho, MIMO signal processing for mode-division multiplexing: an overview of channel models and signal processing architectures, IEEE Signal Process. Mag. 31 (2014) 25–34, http://dx.doi.org/10.1109/MSP.2013.2290804.
  • [105] B. Yang, J. Duan, Z. Xie, H. Xiao, Evaluation of mode field diameter of step-index fibers and comparison analysis, Res. J. Appl. Sci. Eng. Technol. 6 (2013) 382–386, http://dx.doi.org/10.19026/rjaset.6.4090.
  • [106] R. Olshansky, Leaky modes in graded index optical fibers, Appl. Opt. 15 (1976) 2773–2777, http://dx.doi.org/10.1364/AO.15.002773.
  • [107] T. Sakamoto, T. Mori, T. Yamamoto, S. Tomita, Differential mode delay managed transmission line for WDM-MIMO system using multi-step index Fiber, J. Lightwave Technol. 30 (2012) 2783–2787, http://dx.doi.org/10.1109/JLT.2012.2208095.
  • [108] R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, Relationship between mode coupling and fiber characteristics in few-mode fibers analyzed using impulse response measurements technique, J. Lightwave Technol. 35 (2017) 650–657, http://dx.doi.org/10.1109/JLT.2016.2609002.
  • [109] M.J. Adams, Linewidth of a single mode in a multimode injection laser, Electron. Lett. 19 (1983) 652, http://dx.doi.org/10.1049/el:19830443.
  • [110] D.W. Peckham, Y. Sun, A. McCurdy, R. Lingle, Few-mode fiber technology for spatial multiplexing, in: Opt. Fiber Telecommun., Elsevier, 2013, pp. 283–319, http://dx.doi.org/10.1016/B978-0-12-396958-3.00008-1.
  • [111] G. Li, N. Bai, N. Zhao, C. Xia, Space-division multiplexing: the next frontier inoptical communication, Adv. Opt. Photonics 6 (2014) 413, http://dx.doi.org/10.1364/AOP.6.000413.
  • [112] K.-P. Ho, J.M. Kahn, Statistics of group delays in multimode fiber with strongmode coupling, J. Lightwave Technol. 29 (2011), http://dx.doi.org/10.1109/JLT.2011.2165316.
  • [113] M.-J.L. John Abbott, Scott Bickham, Paulo Dainese, Optical fiber telecommunications VIA: chapter 7. fibers for short-distance... - John Abbott, Scott Bickham, Paulo Dainese, Ming-Jun Li - Google Books, in: FibersShort-Distance Appl., 2013, Elsevier Inc. Chapters, p. 794, https://books.google.com.my/books/about/Optical Fiber Telecommunications VIA.html?id=Kz52DAAAQBAJ&redir esc=y(Accessed March 28, 2019).
  • [114] P.J. Winzer, G.J. Foschini, MIMO capacities and outage probabilities inspatially multiplexed optical transport systems, Opt. Express 19 (2011)16680, http://dx.doi.org/10.1364/OE.19.016680.
  • [115] A. Technologies, Avago Technologies Safe Harbor Statement, 2015.
  • [116] K. Sakaime, R. Nagase, K. Watanabe, T. Saito, Connection characteristics of multicore fiber connector, 2013 18th Optoelectron. Commun. Conf. Held Jointly With 2013 Int. Conf. Photonics Switch. OECC/PS 3 (2013) 76–77.
  • [117] “Avago Technologies.” [Online], 2019, Available:http://www.avagotech.com/. Google Search, (n.d.).https://www.google.com/search?q=“Avago+Technologies.”+%5BOnline%5D.+Avail-able%3A+http%3A%2F%2Fwww.avagotech.com%2F.&oq=“Avago+Technologies.”+%5BOn-line%5D.+Available%3A++http%3A%2F%2Fwww.avagotech.com%2F.&aqs=chrome.69i57&s (accessed June 20, 2018).
  • [118] G.M. Saridis, D. Alexandropoulos, G. Zervas, D. Simeonidou, Survey andevaluation of space division multiplexing: from technologies to opticalnetworks, IEEE Commun. Surv. Tutorials. 17 (2015) 2136–2156, http://dx.doi.org/10.1109/COMST.2015.2466458.
  • [119] P. Mitchell, G. Brown, R.R. Thomson, N. Psaila, A. Kar, 57 channel (19x3)spatial multiplexer fabricated using direct laser inscription, Opt. FiberCommun. Conf. (2014) M3K.5, http://dx.doi.org/10.1364/OFC.2014.M3K.5.
  • [120] H. Ono, K. Shikama, T. Takahashi, S. Yanagi, Y. Abe, Fan-in/fan-out device employing v-groove substrate for multicore fibre, Electron. Lett. 51 (2015)1347–1348, http://dx.doi.org/10.1049/el.2015.1330.
  • [121] H. Uemura, K. Omichi, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, Fusedtaper type fan-in/fan-out device for 12 core multi-core fiber, in: 2014 Optoelectron. Commun. Conf. OECC 2014 Aust. Conf. Opt. Fibre Technol.ACOFT 2014, 2014, pp. 49–50, http://www.scopus.com/inward/record.url?eid=2-s2.0-84907079820&partnerID=tZOtx3y1.
  • [122] K. Igarashi, D. Soma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N.Yoshikane, T. Tsuritani, I. Morita, M. Suzuki, D. Qian, M. Huang, E. Ip, Y.Huang, Y. Shao, J. Hu, T. Wang, B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S.Chandrasekhar, M.F. Yan, J.M. Fini, E.M. Monberg, F.V. Dimarcello, K. Abedin,P.W. Wisk, D.W. Peckham, P. Dziedzic, J. Sakaguchi, B.J. Puttnam, W. Klaus, Y.Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R.Sugizaki, T. Kobayashi, M. Watanabe, H. Kubota, H. Kawakami, A. Matsuura,Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I.Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, T. Morioka, R. Ryf, H.Chen, N.K. Fontaine, A.M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B.Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, R. Amezcua-Correa,M. Li, A. Dogariu, S. Zhang, Y. Zhang, X. Cheng, Y. Tian, P. Nan Ji, A. Collier, Y.Geng, J. Li˜nares, C. Montero, V. Moreno, X. Prieto, H. Takara, A. Sano, D. Lee,M. Oguma, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, H. Nasu, K.Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I.Morita, M. Suzuki, D. Soma, N. Yoshikane, Ultra-denseSpatial-division-multiplexed Optical Fiber Transmission Over 6-Mode19-Core Fibers, 2016, http://dx.doi.org/10.1364/OE.24.010213.
  • [123] K. Shikama, Y. Abe, H. Ono, A. Aratake, Low-loss andlow-mode-dependent-loss fan-in/fan-out device for 6-mode 19-core fiber, J.Lightwave Technol. 36 (2018) 302–308, http://dx.doi.org/10.1109/JLT.2017.2765404.
  • [124] K. Igarashi, D. Soma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N.Yoshikane, T. Tsuritani, I. Morita, M. Suzuki, Ultra-densespatial-division-multiplexed optical fiber transmission over 6-mode19-core fibers, Opt. Express 24 (2016) 10213, http://dx.doi.org/10.1364/OE.24.010213.
  • [125] R. Ryf, A. Sierra, R.-J. Essiambre, A. Gnauck, S. Randel, M. Esmaeelpour, S.Mumtaz, P.J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru,T. Sasaki, Coherent 1200-km 6 x 6 MIMO mode-multiplexed transmissionover 3-core microstructured fiber, 37th Eur. Conf. Expo. Opt. Commun.(2011) Th.13.C.1, http://dx.doi.org/10.1364/ECOC.2011.Th.13.C.1.
  • [126] R. Ryf, R. Essiambre, A. Gnauck, S. Randel, M.A. Mestre, C. Schmidt, P.Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, T. Sasaki,Space-division multiplexed transmission over 4200 km 3-coremicrostructured fiber, Natl. Fiber Opt. Eng. Conf. (2012) PDP5C.2, http://dx.doi.org/10.1364/NFOEC.2012.PDP5C.2.
  • [127] T. Hayashi, Y. Tamura, T. Hasegawa, T. Taru, Record-low spatial modedispersion and ultra-low loss coupled multi-core fiber for ultra-long-haultransmission, J. Lightwave Technol. 35 (2017) 450–457, http://dx.doi.org/10.1109/JLT.2016.2614000.
  • [128] M. Hirano, T. Haruna, Y. Tamura, T. Kawano, S. Ohnuki, Y. Yamamoto, Y.Koyano, T. Sasaki, record low loss, record high FOM optical fiber withmanufacturable process, Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf.(2013) PDP5A.7, http://dx.doi.org/10.1364/OFC.2013.PDP5A.7.
  • [129] R. Ryf, N.K. Fontaine, S.H. Chang, J.C. Alvarado, B. Huang, J. Antonio-Lopez, H.Chen, R.-J. Essiambre, E. Burrows, R.W. Tkach, R. Amezcua-Correa, T.Hayashi, Y. Tamura, T. Hasegawa, T. Taru, Long-haul transmission overmulti-core fibers with coupled cores, 2017 Eur. Conf. Opt. Commun. (2017)1–3, http://dx.doi.org/10.1109/ECOC.2017.8345874.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27d58767-9536-42e3-828e-3ad4f28fc50a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.