PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Investigation of a Double Pipe Heat Exchanger under Different Flow Configuration by Using Experimental and Computational Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat exchangers are widely employed in numerous industrial applications to serve the heat recovery and cooling purpose. This work reports a performance analysis of a tube in tube heat exchanger for different flow configuration under variable operating conditions. The experimental investigation was performed on a U-shaped double pipe heat exchanger set up whereas Commercial Computational Fluid Dynamics code FLUENT along with k-ε turbulence modeling scheme was implemented for the simulation study. The flow solution was achieved by implementing k-ε turbulence modeling scheme and the simulation findings were compared with the experimental results. The experimental findings were in good agreement with the simulation results. The counter-flow configuration was found to be 29.4% more effective than the cocurrent one at low fluid flow rate. Direct relationship between heat transfer rate and flow rate is observed while effectiveness and LMTD showed inverse relationship with it. The significance of inlet temperature of hot and cold stream has been evaluated, they play crucial role in heat exchange process.
Rocznik
Strony
27--41
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab.
Twórcy
autor
  • Department of Mechanical and Industrial Engineering, IIT Roorkee, India
autor
  • Department of Mechanical and Industrial Engineering, IIT Roorkee, India
autor
  • Department of Mechanical and Industrial Engineering, IIT Roorkee, India
autor
  • Department of Mechanical and Industrial Engineering, IIT Roorkee, India
Bibliografia
  • [1] A. Singh and S.S. Sehgal. Thermohydraulic analysis of Shell and tube heat exchanger with segmental baffles. ISRN Chemical Engineering, 1–5, 2013. doi: 10.1155/2013/548676.
  • [2] P. Gunnasegaran, N.H. Shuaib, and M.F. Abdul Jalal. The effect of geometrical parameters on heat transfer characteristics of compact heat exchanger with louvered fins. ISRN Thermodynamics, 1–10, 2010. doi: 10.5402/2012/832708.
  • [3] P. Gupta and M.D. Atrey. Performance evaluation of counter flow heat exchangers considering the effect of heat in leak and longitudinal conduction for low-temperature applications. Cryogenics, 40(7):469–474, 2000. doi: 10.1016/S0011-2275(00)00069-2.
  • [4] R. Manimaran, K. Palaniradja, N. Alagumurthi, and J. Hussain. Factors affecting the thermal performance of heat pipe – a review. Journal of Engineering Research and Studies, 3(2):20–4, 2012.
  • [5] S.P. Narayanan and G. Venkatarathnam. Performance of a counterflow heat exchanger with heat loss through the wall at the cold end. Cryogenics, 39(1):43–52, 1999. doi: 10.1016/S0011-2275(98)00123-4.
  • [6] J.C. Chato, R.J. Laverman, and J.M. Shah. Analyses of parallel flow, multi-stream heat exchangers. International Journal of Heat and Mass Transfer, 14(1):1691–1703, 1971. doi: 10.1016/0017-9310(71)90077-9.
  • [7] M. Khaled, M. Ramadan, A. Shaito, H.E. Hage, F. Harambat, and H. Peerhossaini. Parametric analysis of heat exchanger thermal performance in complex geometries – effect of air velocity and water flow distributions. Heat Transfer Engineering, 37(12):1027–1037, 2016. doi: 10.1080/01457632.2015.1104166.
  • [8] B. Kalidasan and M. Ravikumar. Numerical analysis of compact heat exchanger for flow distribution. Indian Journal of Science and Technology, 9(6):1–9, 2016. doi: 10.17485/ijst/2016/v9i6/74596.
  • [9] M. Tutar and A. Akkoca. Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin-and-tube heat exchangers. Numerical Heat Transfer, Part A: Applications, 46(3):301–321, 2004. doi: 10.1080/10407780490474762.
  • [10] J.B.B. Rao, V.R. Raju. Numerical and heat transfer analysis of shell and tube heat exchanger with circular and elliptical tubes. International Journal of Mechanical and Materials Engineering, 11(6):1–18, 2016. doi: 10.1186/s40712-016-0059-x.
  • [11] H. Ma, D.E. Oztekin, S. Bayratkar, S. Vayla and A. Oztekin. Computational fluid dynamics and heat transfer analysis for a novel heat Exchanger. Journal of Heat Transfer, 137(5):051801, 2015. doi: 10.1115/1.4029764.
  • [12] T. Dang, J. Teng, and J. Chu. Effect of flow arrangement on the heat transfer behaviors of a microchannel heat exchanger. In Proceedings of International Multiconference of Engineers of Computer Scientists, IMECS 2010, Vol. 3, Hong Kong, 17–19 March, 2010.
  • [13] R.L. Mohanty, S. Bashyam, and D. Das. Numerical analysis of double pipe heat exchanger using heat transfer augmentation techniques. International Journal of Plastics Technology, 18(3):337–348, 2014. doi: 10.1007/s12588-014-9093-9.
  • [14] Fluent: Fluent User’s Guide, Lebanon, NH, Fluent Inc. 2006.
  • [15] M.N. Ozisik. Heat Transfer: a Basic Approach. McGraw-Hill, New York, 1985.
  • [16] F.P. Incropera and D.P. DeWitt. Fundamentals of Heat and Mass Transfer. 5th edition, J.Wiley & Sons, New York, 2002.
  • [17] S.C. Chapra and R.P. Canale. Numerical Methods for Engineers. 3rd edition. McGraw-Hill, New York, 1998.
  • [18] D.Q. Kern and A.D. Kraus. Extended Surface Heat Transfer. McGraw-Hill, 1972.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27cb5c52-114c-47c8-85c9-cf3d44a5e4c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.