PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein, we analyzed the morphology of atmospheric plasma-sprayed (APS) coating on medical 316L stainless steel and its influence on the physical and electrochemical properties of implant application. Five types of coatings were examined: hydroxyapatite (HAp), titanium (Ti), zirconium (Zr), Ti/HAp and Zr/HAp. The base properties of the coatings were analyzed via chemical and phase composition, surface topography, surface wettability and in particular the corrosion resistance in Ringer solution in immersed conditions and potentiodynamic test, and EIS analysis. APS coating of pure HAp on 316L stainless steel showed poor cohesive bonding to the substrate material, whereas the application of Ti and Zr interlayer prior to HAp deposition improved surface morphology and coating properties. The beneficial effect of Ti and Zr interlayer under HAp layer on binding was demonstrated. HAp containing coatings (HAp, Ti/HAp and Zr/HAp) show Ca/P ratio greater than 1.8, which may positively influence the differentiation of osteogenic cells and good adhesion to bones. Among the studied materials, the composite coatings with Zr or Zr/HAp showed favorable physicochemical properties and the highest corrosion resistance in Ringer solution.
Rocznik
Strony
223--243
Opis fizyczny
Bibliogr. 58 poz., rys., wykr.
Twórcy
  • Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., Kyiv 03150, Ukraine
  • E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., Kyiv 03150, Ukraine
  • E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., Kyiv 03150, Ukraine
  • Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
  • Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] Branemark PI, Zarb GAAT. Tissue-integrated prostheses. Chicago: Quintessen; 1985.
  • [2] Kamachimudali U, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana. 2003;28:601–37.
  • [3] Evans EM, Freeman MAR, Miller AJ, Vernon-Roberts B. Metal sensitivity as a cause of bone necrosis and loosening of the prosthesis in total joint replacement. J Bone Jt Sur Br. 1974;56-B:626–42.
  • [4] Gilbert JL. Corrosion in the human body: metallic implants in the complex body environment. Corrosion. 2017;73:1478–95.
  • [5] Zhao T, Mu G. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid. Corros Sci. 1999;41:1937–44.
  • [6] Alcázar JCB, Lemos RMJ, Conde MCM, Chisini LA, Salas MMS, Noremberg BS, et al. Preparation, characterization, and biocompatibility of different metal oxide/PEG-based hybrid coating synthesized by sol–gel dip coating method for surface modification of titanium. Prog Org Coat. 2019;130:206–13.
  • [7] Hayajneh MT, Almomani M, Al-Daraghmeh M. Enhancement the corrosion resistance of AISI 304 stainless steel by nano-composite gelatin–titanium dioxide coatings. Manuf Technol. 2019;19:759–66.
  • [8] Cordova LA, Stresing V, Gobin B, Rosset P, Passuti N, Gouin F, et al. Orthopaedic implant failure: aseptic implant loosening-the contribution and future challenges of mouse models in translational research. Clin Sci. 2014;127:277–93.
  • [9] O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW-H. The roles of ions on bone regeneration. Drug Discov Today. 2018;23:879–90.
  • [10] Woźniak A, Adamiak M, Chladek G, Bonek M, Walke W, Bialas O. The influence of hybrid surface modification on the selected properties of CP titanium grade II manufactured by selective laser melting. Materials. 2020;13:2829.
  • [11] Bialas O, Lis M, Woźniak A, Adamiak M. Laser superficial fusion of gold nanoparticles with PEEK polymer for cardiovascular application. Materials. 2021;14:971.
  • [12] Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 2011.
  • [13] Singh S, Prakash C, Singh H. Deposition of HA-TiO 2 by plasma spray on β-phase Ti– 35 Nb– 7 Ta– 5 Zr alloy for hip stem: characterization, mechanical properties, corrosion, and in-vitro bioactivity. Surf Coat Technol. 2020;398:126072.
  • [14] Lv H, Zhao W, An Q, Nie P, Wang J, Chu PK. Nanomechanical properties and microstructure of ZrO2/Al2O3 plasma sprayed coatings. Mater Sci Eng A. 2009;518:185–9.
  • [15] Cao J, Lian R, Jiang X. Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility. Appl Surf Sci. 2020;515:146069.
  • [16] Pham DQ, Berndt CC, Gbureck U, Zreiqat H, Truong VK, Ang ASM. Mechanical and chemical properties of Baghdadite coatings manufactured by atmospheric plasma spraying. Surf Coat Technol. 2019;378:124945.
  • [17] Lu J, Rao MP, MacDonald NC, Khang D, Webster TJ. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 2008;4:192–201.
  • [18] Meinert K, Uerpmann C, Matschullat J, Wolf GK. Corrosion and leaching of silver doped ceramic IBAD coatings on SS 316L under simulated physiological conditions. Surf Coat Technol. 1998;103–104:58–65.
  • [19] Ding Q, Zhang X, Huang Y, Yan Y, Pang X. In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci. 2015;50:189–202.
  • [20] Furuzono T, Okazaki M, Azuma Y, Iwasaki M, Kogai Y, Sawa Y. Newly developed biocompatible material: dispersible titanium-doped hydroxyapatite nanoparticles suitable for antibacterial coating on intravascular catheters. In: Kawanishi H, Takemoto Y, editors. Contributions to nephrology [Internet]. S. Karger AG; 2017 [cited 2021 Mar 9]. p. 144–52. Available from: https://www.karger.com/Article/FullText/450744.
  • [21] Melero HC, Sakai RT, Vignatti CA, Benedetti AV, Fernández J, Guilemany JM, et al. Corrosion resistance evaluation of HVOFproduced hydroxyapatite and TiO 2 -hydroxyapatite coatings in Hanks’ solution. Mat Res [Internet]. 2018 [cited 2021 Jul 4];21. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000205105&lng=en&tlng=en.
  • [22] Zhao X, Niinomi M, Nakai M, Ishimoto T, Nakano T. Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater Sci Eng C. 2011;31:1436–44.
  • [23] AlFarraj AA, Sukumaran A, Al Amri MD, Van Oirschot AB, Jansen JA. A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology. 2018;106:37–44.
  • [24] Thakare JG, Pandey C, Mulik RS, Mahapatra MM. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram Int. 2018;44:6980–9.
  • [25] Thakare JG, Mulik RS, Mahapatra MM. Effect of carbon nanotubes and aluminum oxide on the properties of a plasma sprayed thermal barrier coating. Ceram Int. 2018;44:438–51.
  • [26] Alontseva D, Ghassemieh E, Voinarovych S, Kyslytsia O, Polovetskyi Y, Prokhorenkova N, et al. Manufacturing and characterisation of robot assisted microplasma multilayer coating of titanium implants: Biocompatible coatings for medical implants with improved density and crystallinity. Johnson Matthey Technol Rev. 2020;64:180–91.
  • [27] de Vasconcellos LMR, Leite DO, de Oliveira FN, Carvalho YR, Cairo CAA. Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. Braz Oral Res. 2010;24:399–405.
  • [28] Dorozhkin S V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C 2015:272–326.
  • [29] Seah KHW, Thampuran R, Teoh SH. The influence of pore morphology on corrosion. Corros Sci. 1998;40:547–56.
  • [30] PN EN ISO 5832-9:2007. Implants for surgery-metallic materials-Part 9: wrought high nitrogen stainless steel. Geneva, Switzerland, 2017.
  • [31] Woźniak A, Walke W, Jakóbik-Kolon A, Ziębowicz B, Brytan Z, Adamiak M. The influence of ZnO oxide layer on the physicochemical behavior of Ti 6 Al 4 V titanium alloy. Materials. 2021;14:230.
  • [32] PN-EN ISO 17475:2010. Corrosion of metal and alloys-electrochemical test methods-guidelines for conducting potentiostatic and potentiodynamic, polarization measurements. Geneva: ISO. p. 201.
  • [33] Nozawa K, Aramaki K. One- and two-dimensional polymer films of modified alkanethiol monolayers for preventing iron from corrosion. Corros Sci. 1999;41:57–73.
  • [34] Elsener B, Rota A, Böhni H. Impedance study on the corrosion of PVD and CVD titanium nitride coatings. Mater Sci. 1991;44–45:29–38.
  • [35] Vladescu A, Pruna V, Kulesza S, Braic V, Titorencu I, Bramowicz M, et al. Influence of Ti, Zr or Nb carbide adhesion layers on the adhesion, corrosion resistance and cell proliferation of titania doped hydroxyapatite to the Ti6Al4V alloy substrate, utilizable for orthopaedic implants. Ceram Int. 2019;45:1710–23.
  • [36] Fauchais P. Understanding plasma spraying. J Phys D Appl Phys 2004:R86.
  • [37] Kumari R, Majumdar JD. Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti- 6 Al- 4 V) substrate. Mater Charact. 2017;131:12–20.
  • [38] Shinde SV, Gildersleeve VEJ, Johnson CA, Sampath S. Segmentation crack formation dynamics during air plasma spraying of zirconia. Acta Mater. 2020;183:196–206.
  • [39] Mifune N, Harada Y. Mechanism of vertical microcracking in CaO⋅SiO 2 –CaO⋅ZrO 2 sprayed thermal barrier top coating.
  • [40] Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 2019:1–11.
  • [41] Eliaz N, Metoki N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017;10:334.
  • [42] Edström C. Wet etching of optical thin films. Undefined. 2010.
  • [43] Ziębowicz A, Woźniak A, Ziębowicz B, Kosiel K, Chladek G. The effect of atomic layer deposition of ZrO 2 on the physicochemical properties of cobalt based alloys intended for prosthetic dentistry. Arch Metall Mater. 2018;63:1077–82.
  • [44] Musil J, Jirout M. Toughness of hard nanostructured ceramic thin films. Surf Coat Technol. 2007;201:5148–52.
  • [45] Aktuğ SL, Durdu S, Yalçın E, Çavuşoğlu K, Usta M. In vitro properties of bioceramic coatings produced on zirconium by plasma electrolytic oxidation. Surf Coat Technol. 2017;324:129–39.
  • [46] Ou YX, Lin J, Che HL, Sproul WD, Moore JJ, Lei MK. Mechanical and tribological properties of CrN/TiN multilayer coatings deposited by pulsed DC magnetron sputtering. Surf Coat Technol. 2015;276:152–9.
  • [47] Hainsworth SV, Soh WC. The effect of the substrate on the mechanical properties of TiN coatings. Surf Coat Technol. 2003;163–164:515–20.
  • [48] Miletić A, Terek P, Kovačević L, Vilotić M, Kakaš D, Škorić B, et al. Influence of substrate roughness on adhesion of TiN coatings. J Braz Soc Mech Sci Eng. 2014;36:293–9.
  • [49] Shang W, Chen B, Shi X, Chen Y, Xiao X. Electrochemical corrosion behavior of composite MAO/sol–gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique. J Alloy Compd. 2009;474:541–5.
  • [50] Su J, Charmchi M, Sun H. A study of drop-microstructured surface interactions during dropwise condensation with quartz crystal microbalance. Sci Rep. 2016;6:1–11.
  • [51] Mazumder A, Alangi N, Sethi S, Prabhu KN, Mukherjee J. Study on wettability of plasma spray coated oxide ceramic for hydrophobicity. Surf Interfaces. 2020;20:100591.
  • [52] Kung KC, Lee TM, Lui TS. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. J Alloys Compd. 2010;508:384–90.
  • [53] Sowa M, Piotrowska M, Widziołek M, Dercz G, Tylko G, Gorewoda T, et al. Bioactivity of coatings formed on Ti-13 Nb- 13 Zr alloy using plasma electrolytic oxidation. Mater Sci Eng C. 2015;49:159–73.
  • [54] Dai N, Zhang LC, Zhang J, Chen Q, Wu M. Corrosion behavior of selective laser melted Ti-6 Al- 4 V alloy in NaCl solution. Corros Sci. 2016;102:484–9.
  • [55] Ramachandran R, Nosonovsky M. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant. Phys Chem Chem Phys. 2015;17:24988–97.
  • [56] Akaltun Y, Aslan M, Yetim T, Çayir T, Çelik A. The effect of wettability on corrosion resistance of oxide films produced by SILAR method on magnesium, aluminum and copper substrates. Surf Coat Technol. 2016;292:121–31.
  • [57] Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A Physicochem Eng Aspects. 2010;364:72–81.
  • [58] Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomater. 2008;4:1518–29.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27c93af5-292f-401a-a635-d1b96c589a63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.