PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatiotemporal optical coherence tomography (STOC-T) is the novel modality for high-speed, crosstalk- and aberration-free volumetric imaging of biological tissue in vivo. STOC-T extends the Fourier-Domain holographic Optical Coherence Tomography by the spatial phase modulation that enables the reduction of spatial coherence of the tunable laser. By reducing the spatial coherence of the laser, we suppress coherent noise, and, consequently, improve the imaging depth. Furthermore, we remove geometrical aberrations computationally in postprocessing. We recently demonstrated high-speed, high-resolution STOC-T of human retinal imaging in vivo. Here, we show that the dataset produced by STOC-T can be processed differently to reveal blood flow in the human retina in vivo. To render the blood flow, we first pre-process STOC-T holographic data to access the approximated information about the Doppler-shifted optical field backscattered from the sample. Then, we analyze it using methods from the laser Doppler flowmetry, namely, by analyzing the Doppler broadening caused by moving light scatterers (red blood cells). However, contrary to conventional approaches, we use multiple illumination wavelengths. This enables us to render the structural volumetric and blood flow images from the same dataset concurrently. Our method, denoted as multiwavelength laser Doppler holography (MLDH), links laser Doppler flowmetry with multiwavelength holographic detection to enable noninvasive visualization and possible blood flow quantification at different human retina layers at high speeds and high transverse resolution in vivo.
Twórcy
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, Vilnius LT-10257, Lithuania
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, Vilnius LT-10257, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, Vilnius LT-10257, Lithuania
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
Bibliografia
  • [1] Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature 1975;254:56-8.
  • [2] Bonner R, Nossal R. Model for laser doppler measurements of blood flow in tissue. Appl Opt 1981;20:2097-107.
  • [3] Jasik M, Liebert A, Juskowa J, Karnafel W. Maniewski R [Use of laser-doppler perfusion for evaluation of microcirculation in patients with diabetes type I]. Pol Arch Med Wewn 1998;100:119-24.
  • [4] Liebert A, Leahy M, Maniewski R. Multichannel laser-doppler probe for blood perfusion measurements with depth discrimination. Med Biol Eng Comput 1998; 36:740-7.
  • [5] Maniewski R, Leger P, Lewandowski P, Liebert A, Bendayan P, Boccalon H, et al. Spectral analysis of laser-doppler perfusion signal measured during thermal test. Technol Health Care 1999;7:163-9.
  • [6] Obeid AN. In vitro comparison of different signal processing algorithms used in laser doppler flowmetry. Med Biol Eng Comput 1993;31:43-52.
  • [7] Oberg PA. Laser-doppler flowmetry. Crit Rev Biomed Eng 1990;18:125-63.
  • [8] Humeau A, Buard B, Rousseau D, Chapeau-Blondeau F, Abraham P. Multifractal analysis of laser doppler flowmetry signals: Partition function and generalized dimensions of data recorded before and after local heating. Biocybernetics and Biomedical Engineering 2012;32:17-26.
  • [9] Micheels J, Alsbjorn B, Sorensen B. Laser doppler flowmetry. a new non-invasive measurement of microcirculation in intensive care? Resuscitation 1984;12:31-9.
  • [10] Liebert A, Żołek N, Maniewski R. Laser-Doppler spectrum decomposition for measurement of distribution of speed of particles. Biomedical Optics. Fort Lauderdale, Florida: Optica Publishing Group; 2006. p. SH69.
  • [11] Puyo L, Paques M, Fink M, Sahel JA, Atlan M. Waveform analysis of human retinal and choroidal blood flow with laser doppler holography. Biomed Opt Express 2019;10:4942-63.
  • [12] Puyo L, Paques M, Fink M, Sahel JA, Atlan M. In vivo laser doppler holography of the human retina. Biomed Opt Express 2018;9:4113-29.
  • [13] Puyo L, Paques M, Atlan M. Reverse contrast laser doppler holography for lower frame rate retinal and choroidal blood flow imaging. Opt Lett 2020;45:4012-5.
  • [14] Borycki D, Kholiqov O, Chong SP, Srinivasan VJ. Interferometric Near-Infrared spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media. Opt Express 2016;24:329-54.
  • [15] Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt Express 2006;14:7821-40.
  • [16] Hong Y, Makita S, Yamanari M, Miura M, Kim S, Yatagai T, et al. Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express 2007;15: 7538-50.
  • [17] An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express 2008;16: 11438-52.
  • [18] Wang RK, An L, Francis P, Wilson DJ. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 2010;35:1467-9.
  • [19] Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express 2007;15:4083-97.
  • [20] Tao YK, Kennedy KM, Izatt JA. Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. Opt Express 2009;17:4177-88.
  • [21] Ruminski D, Sikorski BL, Bukowska D, Szkulmowski M, Krawiec K, Malukiewicz G, et al. OCT angiography by absolute intensity difference applied to normal and diseased human retinas. Biomed Opt Express 2015;6:2738-54.
  • [22] Gorczynska I, Migacz JV, Zawadzki RJ, Capps AG, Werner JS. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomed Opt Express 2016;7: 911-42.
  • [23] Chen CL, Wang RK. Optical coherence tomography based angiography [Invited]. Biomed Opt Express 2017;8:1056-82.
  • [24] Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012; 20:4710-25.
  • [25] Szkulmowski M, Szkulmowska A, Bajraszewski T, Kowalczyk A, Wojtkowski M. Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt Express 2008;16:6008-25.
  • [26] Fingler J, Zawadzki RJ, Werner JS, Schwartz D, Fraser SE. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. Opt Express 2009;17:22190-200.
  • [27] Gong P, Li Q, Wang Q, Karnowski K, Sampson DD. Jones matrix-based speckle-decorrelation angiography using polarization-sensitive optical coherence tomography. J Biophotonics 2020;13:e202000007.
  • [28] Chalam KV, Sambhav K. Optical coherence tomography angiography in retinal diseases. J Ophthalmic Vis Res 2016;11:84-92.
  • [29] Povazay B, Unterhuber A, Hermann B, Sattmann H, Arthaber H, Drexler W. Full-field time-encoded frequency-domain optical coherence tomography. Opt Express 2006;14:7661-9.
  • [30] Bonin T, Franke G, Hagen-Eggert M, Koch P, Huttmann G. In vivo fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s. Opt Lett 2010;35: 3432-4.
  • [31] Hillmann D, Spahr H, Hain C, Sudkamp H, Franke G, Pfaffle C, et al. Aberration-free volumetric high-speed imaging of in vivo retina. Sci Rep 2016;6:35209.
  • [32] Hillmann D, Spahr H, Pfaffle C, Sudkamp H, Franke G, Huttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci U S A 2016;113:13138-43.
  • [33] Tomczewski S, Węgrzyn P, Borycki D, Auksorius E, Wojtkowski M, Curatolo A. Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. Biomed Opt Express 2022;13:2186-201.
  • [34] Spahr H, Hillmann D, Hain C, Pfaffle C, Sudkamp H, Franke G, et al. Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography. Opt Lett 2015;40:4771-4.
  • [35] Stremplewski P, Auksorius E, Wnuk P, Kozoń Ł, Garstecki P, Wojtkowski M. In vivo volumetric imaging by crosstalk-free full-field OCT. Optica 2019;6:608-17.
  • [36] Auksorius E, Borycki D, Stremplewski P, Lizewski K, Tomczewski S, Niedzwiedziuk P, et al. In vivo imaging of the human cornea with high-speed and high-resolution fourier-domain full-field optical coherence tomography. Biomed Opt Express 2020;11:2849-65.
  • [37] Auksorius E, Borycki D, Wegrzyn P, Zickiene I, Adomavicius K, Sikorski B, et al. Multimode fiber as a tool to reduce crosstalk in fourier-domain full-field optical coherence tomography. Opt Lett 2022.
  • [38] Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with fourier-domain full-field optical coherence tomography. Biomed Opt Express 2019;10:6390-407.
  • [39] Auksorius E, Borycki D, Wojtkowski M. Multimode fiber enables control of spatial coherence in fourier-domain full-field optical coherence tomography for in vivo corneal imaging. Opt Lett 2021;46:1413-6.
  • [40] Borycki D, Nowakowski M, Wojtkowski M. Control of the optical field coherence by spatiotemporal light modulation. Opt Lett 2013;38:4817-20.
  • [41] Borycki D, Hamkalo M, Nowakowski M, Szkulmowski M, Wojtkowski M. Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography. Biomed Opt Express 2019;10:2032-54.
  • [42] Borycki D, Auksorius E, Wegrzyn P, Wojtkowski M. Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. Opt Lett 2020;45: 1293-6.
  • [43] Auksorius E, Borycki D, Wegrzyn P, Sikorski BL, Lizewski K, Zickiene I, et al. Spatio-temporal optical coherence tomography provides full thickness imaging of the chorioretinal complex. iScience 2022;25:105513.
  • [44] Li Y, Chen J, Chen Z. Advances in doppler optical coherence tomography and angiography. Translational Biophotonics 2019;1:e201900005.
  • [45] Puyo L, Spahr H, Pfaeffle C, Hüttmann G, Hillmann D. Retinal blood flow imaging with combined full-field swept-source optical coherence tomography and laser doppler holography. Opt Lett 2022.
  • [46] Fechtig DJ, Grajciar B, Schmoll T, Blatter C, Werkmeister RM, Drexler W, et al. Line-field parallel swept source MHz OCT for structural and functional retinal imaging. Biomed Opt Express 2015;6:716-35.
  • [47] Auksorius E. Fourier-domain full-field optical coherence tomography with real-time axial imaging. Opt Lett 2021;46:4478-81.
  • [48] Auksorius E, Boccara AC. High-throughput dark-field full-field optical coherence tomography. Opt Lett 2020;45:455-8.
  • [49] Efimov A. Coherence and speckle contrast at the output of a stationary multimode optical fiber. Opt Lett 2018;43:4767-70.
  • [50] Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS. Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004;12:2404-22.
  • [51] Yun SH, Tearney G, de Boer J, Bouma B. Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt Express 2004;12:2977-98.
  • [52] Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. Doppler optical coherence tomography. Prog Retin Eye Res 2014;41:26-43.
  • [53] Puyo L, Paques M, Atlan M. Spatio-temporal filtering in laser doppler holography for retinal blood flow imaging. Biomed Opt Express 2020;11:3274-87.
  • [54] Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett 2008;33:156-8.
  • [55] Park D, Park H, Han DK, Ko H. Single image dehazing with image entropy and information fidelity. 2014 IEEE International Conference on Image Processing (ICIP)2014. p. 4037-41.
  • [56] Auksorius E, Borycki D, Węgrzyn P, Sikorski B, Žičkienė I, Liżewski K, et al. Spatio-Temporal Optical Coherence Tomography provides advanced imaging of the human retina and choroid. arXiv:210710672. 2021.
  • [57] Winkelmann JA, Eid A, Spicer G, Almassalha LM, Nguyen TQ, Backman V. Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging. Light Sci Appl 2019;8:7.
  • [58] Samaei S, Sawosz P, Kacprzak M, Pastuszak Z, Borycki D, Liebert A. Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo. Sci Rep 2021;11:1817.
  • [59] Scholler J, Groux K, Goureau O, Sahel JA, Fink M, Reichman S, et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci Appl 2020;9:140.
  • [60] Scholler J, Mazlin V, Thouvenin O, Groux K, Xiao P, Sahel JA, et al. Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT. Biomed Opt Express 2019;10:731-46.
  • [61] Scholler J, Groux K, Grieve K, Boccara C, Mece P. Adaptive-glasses time-domain FFOCT for wide-field high-resolution retinal imaging with increased SNR. Opt Lett 2020;45:5901-4.
  • [62] Valente D, Vienola KV, Zawadzki RJ, Jonnal RS. Kilohertz retinal FF-SS-OCT and flood imaging with hardware-based adaptive optics. Biomed Opt Express 2020;11: 5995-6011.
  • [63] Puyo L, Paques M, Atlan M. Retinal blood flow reversal quantitatively monitored in out-of-plane vessels with laser doppler holography. Sci Rep 2021;11:17828.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27c830ca-61de-415e-84ba-d65e9eb5d806
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.