Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let n ∈ N, n ≥ 2. An element (x1,…, xn) ∈ En is called a norming point of T ∈ L(nE) if ∥x1∥ = … = ∥xn∥ = 1 and |T(x1,…, xn)| = ∥T∥, where L(nE) denotes the space of all continuous n-linear form on E. For T ∈ L(nE), we define Norm(T) = {(x1,…, xn) ∈ En : (x1…, xn) is a norming point of T}. Norm(T) is called the norming set of T. Let 0 ≤ θ < π/4 and ℓ2(∞,θ) = R2 with the rotated supremum norm ∥(x, y)∥(∞,θ) = max{|x cos θ + y sin θ|, |x sin θ − y cos θ|}. In this paper, we characterize Norm(T) for every T ∈ L(mℓ2(∞,θ)) for m ≥ 2.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
49--63
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Department of Mathematic, Kyungpook National University, Daegu 702-701, Republic of Korea
Bibliografia
- [1] Aron R. M., Finet C., Werner E., Some remarks on norm-attaining n-linear forms, Function spaces (Edwardsville, IL, 1994), 19-28, Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.
- [2] Bishop E., Phelps R., A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97-98.
- [3] Choi Y. S., Kim S. G., Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54(2) (1996), 135-147.
- [4] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
- [5] Jiménez Sevilla M., Payá R., Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math., 127 (1998), 99-112.
- [6] Kim S. G., The norming set of a bilinear form on l2∞ , Comment. Math., 60 (1-2) (2020), 37-63.
- [7] Kim S. G., The norming set of a polynomial in P(2l2∞), Honam Math. J., 42(3) (2020), 569-576.
- [8] Kim S. G., The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud., 55(2) (2021), 171-180.
- [9] Kim S. G., The norming set of a symmetric 3-linear form on the plane with the l1-norm, New Zealand J. Math., 51 (2021), 95-108.
- [10] Kim S. G., The unit ball of bilinear forms on R2 with a rotated supremum norm, Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci., 2(64)(1) (2022), 99-120.
- [11] Kim S. G., The norming sets of L(2l21) and Ls(2l31), Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci., 2(64)(2) (2022), 125-150.
- [12] Kim S. G., The norming sets of L(2R2h(w)), Acta Sci. Math. (Szeged), 89(1-2) (2023), 61-79.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27c2d14c-8013-4f9e-a5ca-1543d5f3a0dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.