PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Level of detail categorization for the application in urban design

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poziom szczegółowości kategoryzacji modeli cyfrowych dla zastosowania w projektowaniu urbanistycznym
Języki publikacji
EN
Abstrakty
EN
Urban planning and urban design involve complex processes that require detailed information about the visual information of a place at various scales. Different graphic tools, such as game engines, are evolving to use urban representation fields. The concept of "level of detail" (LOD) has been used to categorize the level of detail in AEC applications such as BIM and GML for urban representation models. However, there is a need to distinguish between different LOD concepts commonly used in various fields, as these terms have different interpretations and implications. This article presents a novel approach to re-categorizing the level of detail concept in AEC applications, led by the traditional use of LOD and in parallel with urban planning scales. From an urbanist perspective, a four-stage LOD classification framework has been studied: LOD 1000 for urban and neighbourhood scales, LOD 2000 for the plaza and square scales, LOD 3000 for architectural and street scales, and LOD 4000 for protected and private areas.
Czasopismo
Rocznik
Tom
Strony
9--28
Opis fizyczny
Bibliogr. 53 poz., fot., rys., tab.
Twórcy
autor
  • Politechnika Gdańska, Poland. Wydział Architektury, Katedra Architektury Miejskiej i Przestrzeni Nadwodnych
  • Dokuz Eylül University, Turkish. Faculty of Architecture, Department of City and Regional Planning Urbanism
  • Dokuz Eylül University, Turkish. Institute of Science, Urban Design MSc Pragramme
Bibliografia
  • [1] Abualdenien, J., & Borrmann, A. (2022a). Levels of detail, development, definition, and information need: A critical literature review. Journal of Information Technology in Construction, 27, 363–392. https://doi.org/10.36680/j.itcon.2022.018.
  • [2] Albert, J., Bachmann, M., & Hellmeier, A. (2003). Zielgruppe / Anwendungs-bereich.
  • [3] Albrecht, F., & Moser, J. (n.d.). Potential of 3D City Models for Municipalities – The User-Oriented Case Study of Salzburg.
  • [4] Batty, M. (2012). Planning Support Systems: Progress, Predictions, and Speculations on the Shape of Things to Come.
  • [5] Batty, M. (2007) Planning Support Systems: Progress, Predictions, and Speculations on the Shape of Things to Come. Working Paper. CASA Working Papers (122). Centre for Advanced Spatial Analysis (UCL), London, UK.
  • [6] Batty, M. (2018). Digital twins. Environment and Planning B: Urban Analytics and City Science, 45(5), 817– 820. https://doi.org/10.1177/2399808318796416.
  • [7] Biljecki, F., Heuvelink, G. B. M., Ledoux, H., & Stoter, J. (2015). Propagation of positional error in 3D GIS: Estimation of the solar irradiation of building roofs. International Journal of Geographical Information Science, 29(12), 2269–2294. https://doi.org/10.1080/13658816.2015.1073292.
  • [8] Biljecki, F., Ledoux, H., Stoter, J., & Zhao, J. (2014). Formalisation of the level of detail in 3D city modelling. Computers, Environment and Urban Systems, 48, 1–15. https://doi.org/10.1016/j.compenvurbsys.2014.05.004.
  • [9] Biljecki, F., Zhao, J., Stoter, J., & Ledoux, H. (2013). Revisiting the concept of level of detail in 3D city modelling. In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences: Vol. II2/W1. https://doi.org/10.5194/isprsannals-II-2-W1-63-2013.
  • [10] Billen, R. (n.d.). Some issues on 3D Urban GIS.
  • [11] BIMForum (2020c) 2020 Level of Development Specification Guide. (2020). BIMForum. http://bimforum.org/lod/. (Accessed: 18-12-2022).
  • [12] Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building Information Modeling. https://link.springer.com/book/10.1007/978-3-319-92862-3.
  • [13] Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms. Communications of the ACM, 19(10), 547–554. https://doi.org/10.1145/360349.360354.
  • [14] Coltekin, A., & Reichenbacher, T. (2011). High Quality Geographic Services and Bandwidth Limitations. Future Internet, 3(4), Article 4. https://doi.org/10.3390/fi3040379.
  • [15] Döllner, J., Baumann, K., & Buchholz, H. (2007). Virtual 3D City Models as Foundation of Complex Urban Information Spaces. https://www.semanticscholar.org/paper/Virtual-3D-City-Models-as-Foundation-of-Complex-D%C3%B6llner-Baumann/e9aff2a83086dcbc9abea029e95f21e15bcd4788 (Accessed: 18-12- 2022).
  • [16] Duncan, C., Cunningham, J., Wang, A., & Kennedy, A. (n.d.). Urban Planning Optimization via “Cities: Skylines.”
  • [17] Fassi, F., Fregonese, L., Ackermann, S., & De Troia, V. (2013). COMPARISON BETWEEN LASER SCANNING AND AUTOMATED 3D MODELLING TECHNIQUES TO RECONSTRUCT COMPLEX AND EXTENSIVE CULTURAL HERITAGE AREAS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W1, 73–80. https://doi.org/10.5194/isprsarchives-XL-5- W1-73-2013.
  • [18] Goodall, J. L., Castronova, A. M., Huynh, N., & Caicedo, J. M. (2012). Application of the Open Geospatial Consortium (OGC) Web Processing Service (WPS) Standard for Exposing Water Models as Web Services. 2012, IN11E-1492.
  • [19] Gröger, G., Kolbe, T. H., & Czerwinski, A. (2006). Candidate OpenGIS® CityGML Implementation Specification.
  • [20] Gröger, G., Kolbe, T. H., Czerwinski, A., & Nagel, C. (2008). OpenGIS® City Geography Markup Language (CityGML) Encoding Standard.
  • [21] Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-H. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard.
  • [22] Gröger, G., & Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33. https://doi.org/10.1016/j.isprsjprs.2012.04.004.
  • [23] Halik, Ł., & Kent, A. J. (2021). Measuring user preferences and behaviour in a topographic immersive virtual environment (TopoIVE) of 2D and 3D urban topographic data. International Journal of Digital Earth, 14(12), 1835–1867. https://doi.org/10.1080/17538947.2021.1984595.
  • [24] Hanzl, M. (2007). Information technology as a tool for public participation in urban planning: A review of experiments and potentials. Design Studies, 28(3), 289–307. https://doi.org/10.1016/j.destud.2007.02.003.
  • [25] Hanzl, M., & Wrona, S. (2004). Visual Simulation as a Tool for Planning Education—Computer Aided Participation Support. Architecture in the Network Society [22nd ECAADe Conference Proceedings / ISBN 0- 9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, Pp. 500-507.
  • [26] Hughes, J., Dam, A. van, McGuire, M., Sklar, D., Foley, J., Feiner, S., & Akeley, K. (2013). Computer Graphics: Principles and Practice (3rd edition). Addison-Wesley Professional.
  • [27] Jarvis, R. K. (1980). Urban Environments as Visual Art or as Social Settings? Town Planning Review, 51(1), 50. https://doi.org/10.3828/tpr.51.1.f3714335ku0x98r2.
  • [28] Javaid, M., Haleem, A., Pratap Singh, R., & Suman, R. (2021). Industrial perspectives of 3D scanning: Features, roles and it’s analytical applications. Sensors International, 2, 100114. https://doi.org/10.1016/j.sintl.2021.100114.
  • [29] Joachim, B., A., G., Gröger, G., K.-H, H., & Löwner, M.-O. (2013). Enhanced LOD concepts for virtual 3D city models. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-2/W1, 51–61. https://doi.org/10.5194/isprsannals-II-2-W1-51-2013.
  • [30] Khan, T., & Zhao, X. (2021). Perceptions of Students for a Gamification Approach: Cities Skylines as a Pedagogical Tool in Urban Planning Education (pp. 763–773). https://doi.org/10.1007/978-3-030-85447-8_64.
  • [31] Kolbe, T. H., Gröger, G., & Plümer, L. (2005). CityGML: Interoperable Access to 3D City Models. In P. van Oosterom, S. Zlatanova, & E. M. Fendel (Eds.), Geo-information for Disaster Management (pp. 883–899). Springer. https://doi.org/10.1007/3-540-27468-5_63.
  • [32] Konde, A., Tauscher, H., Biljecki, F., & Crawford, J. (2018). FLOOR PLANS IN CITYGML. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4-W6, 25–32. https://doi.org/10.5194/isprs-annals-IV-4-W6-25-2018.
  • [33] Köninger, A., & Bartel, S. (1998). 3d-Gis for Urban Purposes. GeoInformatica, 2(1), 79–103. https://doi.org/10.1023/A:1009797106866.
  • [34] Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New Functions Open Up New Applications. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(1), 43–61. https://doi.org/10.1007/s41064-020-00095-z.
  • [35] Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F., & Nagel, C. (2016). PROPOSAL FOR A NEW LOD ANDMULTI-REPRESENTATION CONCEPT FOR CITYGML. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W1, 3–12. https://doi.org/10.5194/isprs-annals-IV-2-W1-3-2016.
  • [36] Lozano, E. E. (1974). Visual Needs in the Urban Environment. Town Planning Review, 45(4), 351. https://doi.org/10.3828/tpr.45.4.h43m7270u0m3x968.
  • [37] Luebke, D., Reddy, M., Cohen, J. D., Varshney, A., Watson, B., & Huebner, R. (2002). Level of Detail for 3D Graphics (1st edition). Morgan Kaufmann.
  • [38] McLoughlin, J. B. (1973). Control and urban planning (First Edition). Faber and Faber.
  • [39] Nouvel, R., Zirak, M., Dastageeri, H., Coors, V., & Eicker, U. (n.d.). URBAN ENERGY ANALYSIS BASED ON 3D CITY MODEL FOR NATIONAL SCALE APPLICATIONS.
  • [40] Rau, J.-Y., & Cheng, C.-K. (2013). A cost-effective strategy for multi-scale photo-realistic building modeling and web-based 3-D GIS applications in real estate. Computers, Environment and Urban Systems, 38, 35–44. https://doi.org/10.1016/j.compenvurbsys.2012.10.006.
  • [41] Revit Modeling Services | United-BIM Company in USA. (n.d.). Retrieved June 5, 2023, from https://www.united-bim.com/ (Accessed: 30-06-2023).
  • [42] Saran, S., Oberai, K., Wate, P., Konde, A., Dutta, A., Kumar, K., & Senthil Kumar, A. (2018). Utilities of Virtual 3D City Models Based on CityGML: Various Use Cases. Journal of the Indian Society of Remote Sensing, 46(6), 957–972. https://doi.org/10.1007/s12524-018-0755-5.
  • [43] Schwarzer, M. (2017). Computation and the Impact of New Technologies on the Photography of Architecture and Urbanism. Architecture_MPS, 11. https://doi.org/10.14324/111.444.amps.2017v11i4.001.
  • [44] Singh, S. P., Jain, K., & Mandla, V. R. (2013). VIRTUAL 3D CITY MODELING: TECHNIQUES AND APPLICATIONS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W2, 73–91. https://doi.org/10.5194/isprsarchives-XL-2-W2-73-2013 (Accessed: 14-12-2022).
  • [45] Singh, S. P., Jain, K., & Mandla, V. R. (2014). Image based Virtual 3D Campus modeling by using CityEngine. 2(1).
  • [46] Somanath, S., Naserentin, V., Eleftheriou, O., Sjölie, D., Wästberg, B. S., & Logg, A. (2023). On procedural urban digital twin generation and visualization of large scale data (arXiv:2305.02242). arXiv. http://arxiv.org/abs/2305.02242.
  • [47] Summary: E203TM–2013, Building Information Modeling and Digital Data Exhibit – AIA Contract Documents. (n.d.). AIA. Retrieved July 3, 2023, from https://acdoperations.zendesk.com/hc/en-us/articles/1500010381521 (Accessed: 17-11-2022).
  • [48] Victor, L. (2022, August 12). BIM Level of Development (LOD) 100, 200, 300, 350, 400, 500. https://www.united-bim.com/bim-level-of-development-lod-100-200-300-350-400-500/ (Accessed: 07-01- 2023).
  • [49] Wu, C., Yuan, Y., Tang, Y., & Tian, B. (2021). Application of Terrestrial Laser Scanning (TLS) in the Architecture, Engineering and Construction (AEC) Industry. Sensors, 22, 265. https://doi.org/10.3390/s22010265.
  • [50] Xiao, W., Mills, J., Guidi, G., Rodríguez-Gonzálvez, P., Gonizzi Barsanti, S., & González-Aguilera, D. (2018). Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 389–406. https://doi.org/10.1016/j.isprsjprs.2018.01.001.
  • [51] Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., & Kolbe, T. H. (2018). 3DCityDB - a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards, 3(1), 5. https://doi.org/10.1186/s40965-018-0046-7.
  • [52] Zhu, Q., Hu, M., Zhang, Y., & Du, Z. (2009). Research and practice in three-dimensional city modeling. GeoSpatial Information Science, 12(1), 18–24. https://doi.org/10.1007/s11806-009-0195-z.
  • [53] Zimmerman, C. (2014). Photographic Architecture in the Twentieth Century. https://www.upress.umn.edu/book-division/books/photographic-architecture-in-the-twentieth-century (Accessed: 05-12-2019).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27bfa117-ad24-4746-a442-1470b82ddbfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.