PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic-assisted synthesis of reactive carboxymethyl cellulose stabilized nano zero-valent iron and its application for removal of Cr6+ and Cu2+ ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carboxymethyl cellulose (CMC) was used in the chemical reduction using sodium borohydride to yield dispersive nano zero-valent iron (nZVI) particles as reactive and stable adsorbents. CMC- -stabilized nZVI particles were characterized via UV-visible light spectroscopy, X-ray diffraction, dynamic light scattering, transmission electron microscopy, and specific surface area assisted using a probe ultrasonication dispersing tool at 50% amplitude power. High catalytic reactivity obtained in pseudo-first order reaction for Cr6+ (rate constant K1 = 0.0311 min–1) and pseudo-second order for Cu2+ (rate constant K2 = 0.0946 g·mg–1·min–1) indicated that colloidal stability of nZVI particles can be achieved with a stabilizer for the removal of toxic contaminants.
Rocznik
Strony
55--79
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • School of Environmental Engineering, Universiti Malaysia Perlis, Jejawi-Arau-Perlis; 02600, Malaysia
autor
  • School of Environmental Engineering, Universiti Malaysia Perlis, Jejawi-Arau-Perlis; 02600, Malaysia
  • School of Environmental Engineering, Universiti Malaysia Perlis, Jejawi-Arau-Perlis; 02600, Malaysia
autor
  • School of Industrial Technology, Universiti Sains Malaysia, Minden, P. Pinang, 11800, Malaysia
  • School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, P. Pinang; 14300, Malaysia
Bibliografia
  • [1] HOU M., WAN H., LUI T., LUI X., WAN X., The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron, Appl. Catal. B Environ., 200, 84, 170.
  • [2] KARABELLI D., UZUM C., SHAHWAN T., EROGLU A.E., SCOTT T.B., HALLAM K.R., LIEBERWIRTH I., Batch removal of aqueous Cu2+ using nanoparticles of zero-valent iron. A study of the capacity and mechanism of uptake, Ind. Eng. Chem. Res., 2008, 47, 4758.
  • [3] GHEJU M., BALCU I., Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations, J. Hazard. Mater., 2011, 196, 131.
  • [4] XIAO S., MA H., SHEN M., WANG S., HUANG Q., SHI X., Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats, Colloid Surface A, 2011, 381, 48.
  • [5] CRANE R.A., SCOTT T.B., Nanoscale zero-valent iron. Future prospects for an emerging water treatment technology, J. Hazard. Mater., 2012 (211/212), 112.
  • [6] DICKSON D., LIU G., LI C., TACHIEV G., CAI Y., Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticles concentration, humic acid and ionic strength, Sci. Total Environ., 2012, 419, 170.
  • [7] CRANE R.A., DICKINSON M., POPESC I.C., SCOTT T.B., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water, Water Res., 2011, 45 (9), 2931.
  • [8] O’CARROLL D., SLEEP B., KROL M., BOPARAI H., KOCUR C., Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Res., 2013, 51, 104.
  • [9] HE F., ZHAO D., Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol., 2007, 41, 6216.
  • [10] HE F., ZHAO D., Preparation and characterization of a new class of starch-stabilized bimetallic nano-particles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol., 2005, 39, 3314.
  • [11] JANARDHANAN S.K., RAMASAMY I., NAIR B.U., Synthesis of iron oxide nanoparticles using chitosan and starch templates, Transit. Metal Chem., 2008, 33, 127.
  • [12] CHEREPY N.J., LISTON D.B., LOVEJOY J.A., DENG H., ZHANG J.Z., Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles, J. Phys. Chem. B, 1998, 102, 770.
  • [13] SYLVESTER J.P., POULIN S., KABASHIN A.V., SACHER E., MEUNIER M., LUONG J.H.T., Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, J. Phys. Chem. B, 2004, 108 (43), 16864.
  • [14] HUANG K.C., EHRMAN S.H., Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds, Langmuir, 2007, 23 (3), 1419.
  • [15] BAER D.R., GASPAR D.J., HACHIMUTHU P., TECHANE S.D., CASTNER D.G., Application of surface chemical analysis tools for characterization of nanoparticles, Anal. Bioanal. Chem., 2010, 396 (3), 983.
  • [16] BRULLOT W., REDDY N.K., WOUTERS J., VALEV V.K., GODERIS B., VERMANT J., VERBIEST T., Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles, J. Magn. Magn. Mater., 2012, 324, 1919.
  • [17] GREENLEE L., HOOKER S.A., Development of stabilized zero valent iron nanoparticles, Desalination Water Treat., 2012, 37, 114.
  • [18] PHENRAT T., SALEH N., SIRK K., KIM H.J., TILTON R.D., LOWRY G.V., Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes. adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation, J. Nanopart. Res., 2008, 10 (5), 795.
  • [19] LIN C.L., LEE C.F., CHIU W.Y., Preparation and properties of poly (acrylic acid) oligomer stabilized superparamagnetic ferrofluid, J. Interf. Sci., 2005, 29, 411.
  • [20] DICKINSON M., SCOTT T.B., The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent, J. Hazard. Mater., 2010, 178, 171.
  • [21] LI L., QUINLIVAN P.A., KNAPPE D.R.U., Effects of activated carbon surface chemistry and pore struc-ture on the adsorption of organic contaminants from aqueous solution, Carbon, 2002, 40, 2085.
  • [22] PETALA E., DIMOS K., DOUVALIS A., BAKAS T., TUCEK J., ZBOŘIL R., KARAKASSIDES M.A., Nanoscale zero-valent iron supported on mesoporous silica. Characterization and reactivity for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 2013, 261, 295.
  • [23] ZHAO X., LV L., PAN B., ZHANG W., ZHANG S., ZHANG Q., Polymer-supported nanocomposites for environmental application. A review, Chem. Eng. J., 2011, 170, 381.
  • [24] KORTH B.D., KENG P., SHIM I., BOWLES S.E., TANG C., KOWALEWSKI T., NEBESNY K.W., PYUN J., Polymer-coated ferromagnetic surfactants and assembly into nanoparticle chains, J. Am. Chem. Soc., 2006, 128, 6562.
  • [25] WANG Q., LEE S., CHOI H., Aging study on the structure of Fe-O nanoparticles. Stabilization, characterization, and reactivity, J. Phys. Chem. C, 2010, 114 (5), 2027.
  • [26] ELIMELECH M., GREGORY J., JIA X., WILLIAMS R., Particles deposition and aggregation. Measurement, modeling, and simulation, Butterworth-Heinemann, Boston, 1995.
  • [27] SHI L.-N., ZHANG X., CHEN Z.-L., Removal of chromium(VI) from wastewater using bentonite-sup-ported nanoscale zero-valent iron, Water Res., 2011, 45, 886.
  • [28] RANGSIVEK R., JEKEL M.R., Removal of dissolved metals by zero-valent iron (ZVI). Kinetics, equilibria, process and implications for stormwater runoff treatment, Water Res., 2005, 39, 4153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27bb960c-b4b9-4612-941b-813dc6463f62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.