PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, electronic and magnetic properties of Fe, Co, Ni monatomic nanochains encapsulated in armchair LiF nanotubes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Structural, electronic and magnetic properties of transition metal TM (TM = Fe, Co and Ni) atomic chains wrapped in single walled LiF armchair nanotubes have been investigated by the first-principles calculations in the framework of the density functional theory. The generalized gradient approximation (GGA) with Hubbard repulsion potential and without Hubbard repulsion was employed to describe the exchange-correlation potential. It is found that all these TM chains @LiFNTs systems have negative formation energy so they are stable and exothermic. Total density of states and partial densities of states analyses show that the spin polarization and the magnetic moment of TM chains @LiFNTs(n,n) systems come mostly from the TM atom chains. All these nanocomposites are ferromagnetic (FM) and spin splitting between spin up and down is observed. The high magnetic moment and spin polarization of the TM chains @LiFNT(n,n) systems show that they can be used as magnetic nanostructures possessing potential current and future applications in permanent magnetism, magnetic recording, and spintronics.
Wydawca
Rocznik
Strony
283--290
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Physics Department, Faculty of Science, Razi University, Kermanshah, Iran
autor
  • Physics Department, Faculty of Science, Razi University, Kermanshah, Iran
  • Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah, Iran
autor
  • Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, P.O. Box 67149-67346, Kermanshah, Iran
Bibliografia
  • [1] LI H., ZHAO N., HE C., SHI C., DU X., LI J., J. Alloy. Compd., 465 (2008), 51.
  • [2] IVANOVSKAYA V.V., K¨O HLER C., SEIFERT G., Phys. Rev. B, 75 (2007), 075410.
  • [3] SHAHROKHI M., MORADIAN R., Eur. Phys. J. Appl. Phys., 65 (2014), 20402.
  • [4] SHAHROKHI M., NADERI S., FATHALIAN A., Solid State Commun., 152 (2012), 1012.
  • [5] NADERI S., SHAHROKHI M., NORUZI H.R., GURABI A., MORADIAN R., Eur. Phys. J. Appl. Phys., 62 (2013), 30402.
  • [6] DELIN A., TOSATTI E., Phys. Rev. B, 68 (2003), 144434.
  • [7] WOLF S.A., AWSCHALOM D.D., BUHRMAN R.A., DAUGHTON J.M., MOLN´AR S., ROUKES M.L., CHTCHELKANOVA A.Y., TREGER D.M., Science, 294 (2001), 1488.
  • [8] HAMADA N., SAWADA S.I, OSHIYAMA A., Phys. Rev. Lett., 68 (1992), 1579.
  • [9] MORADIAN R., SHAHROKHI M., MORADIAN S., Physica E, 47 (2013), 40.
  • [10] GOLBERG D., XU F.F,. BANDO Y., Appl. Phys. A, 76 (2003), 479.
  • [11] TANG C., BANDO Y., GOLBERG D., DING X., QI SH., J. Phys. Chem. B, 107 (2003), 6539.
  • [12] FAGAN S.B., MOTA R., ANTˆO NIO J.R.S., FAZZIO A., Microelectron. J., 34 (2003), 481.
  • [13] IIJIMA S., Nature, 354 (1991), 56.
  • [14] SUN X.H., LI C.P., WONG W.K., WONG N.B., LEE C.S., LEE S.T., TEO B.K., J. Am. Chem. Soc., 124 (2002), 14464.
  • [15] BEHZAD S., CHEGEL R., MORADIAN R., SHAHROKHI M., Superlattice. Microst., 73 (2014), 185.
  • [16] LEE R.S., GAVILLET J., LAMY DE LA CHAPELLE M., LOISEAU A., COCHON J.L., PIGACHE D., THIBAULT J., WILLAIME F., Phys. Rev. B, 64 (2001), 121405.
  • [17] MORADIAN R., SHAHROKHI M., CHARGANEH S.S., MORADIAN S., Physica E, 46 (2012), 182.
  • [18] XING Y.J., XI Z.H., ZHANG X.D., SONG J.H., WANG R.M., XU J., XUE Z.Q., YU D.P., Solid State Commun., 129 (2004), 671.
  • [19] MORADIAN R., SHAHROKHI M., Physica E, 44 (2011), 1760.
  • [20] MORADIAN R., SHAHROKHI M., J. Phys. Chem. Solids, 74 (2013), 1063.
  • [21] SHAHROKHI M., MORADIAN R., Indian. J. Phys., 89 (2014), 249.
  • [22] ESMAILIAN A., SHAHROKHI M., KANJOURI F., Int. J. Mod. Phys. C, 26 (2015), 1550130.
  • [23] ARGHAVANI NIA B., SHAHROKHI M., MORADIAN R., MANOUCHEHRI I., Eur. Phys. J. Appl. Phys., 67 (2014), 20403.
  • [24] FATHALIAN A., MORADIAN R., SHAHROKHI M., Solid State Commun., 156 (2013), 1.
  • [25] SHAHROKHI M., LEONARD C., J. Alloy. Compd., 682 (2016), 254.
  • [26] YANG C.K., ZHAO J., PING LU J., Phys. Rev. B, 74 (2006), 235445.
  • [27] MORADIAN R., SHAHROKHI M., KARAMI POURIAN A., J. Magn. Magn. Mater., 344 (2013), 162.
  • [28] MORADIAN R., SHAHROKHI M., AMJAIAN S., SAMADI J., IJADI R., Eur. Phys. J. Appl. Phys., 67 (2014), 20406.
  • [29] WANG S.F., CHEN LI Y., ZHANG Y., ZHANG J.M., JI V., XU K.W., J. Phys. Chem. C, 116 (2012), 1657.
  • [30] FERNANDEZ LIMA F.A., HENKES A.V., SILVEIRA E.F., MARCO A.C.N., J. Phys. Chem. C, 116 (2012), 4969.
  • [31] BLAHA P., SINGH D.J., SORANTIN P.I., SCHWARZ K., Phys. Rev. B, 46 (1992), 1325.
  • [32] BLAHA P., SCHWARZ K., MADSEN G.K.H., LUITZ J., WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, 2001.
  • [33] PERDEW J.P., BURKE K., ERNZERHOF M., Phys. Rev. Lett., 77 (1996), 3865.
  • [34] ANISIMOV V.I., SOLOVYEV I.V., KOROTIN M.A., CZY˙ZYK M.T., SAWATZKY G.A., Phys. Rev. B, 48 (1993), 16929.
  • [35] LIECHTENSTEIN A.I., ANISIMOV V.I., ZAANEN J., Phys. Rev. B, 52 (1995), 5467.
  • [36] LANY S., RAEBIGER H., ZUNGER A., Phys. Rev. B, 77 (2008), (24) 241201.
  • [37] SHOAIB MOHAMMED Y., YU Y., HONGXIA W., KAI L., XIAOBO D., J. Magn. Magn. Mater., 322 (2010), 653.
  • [38] MONKHORST H.J., PACK J.D., Phys. Rev. B, 13 (1976), 5188.
  • [39] BAUMEIER B., KR¨U GER P., POLLMANN J., Phys. Rev. B, 76 (2007), 085407.
  • [40] ATACA C., CAHANGIROV S., DURGUN E., JANG Y.R., CIRACI S., Phys. Rev. B, 77 (2008), 214413.
  • [41] WANG S.F., CHEN LI Y., ZHANG Y., ZHANG J.M., XU K.W., J. Mol. Struc. THEOCHEM., 962 (2010), 108.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27bb46e4-7314-42c1-8ba9-703d416356de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.