PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface layer performance of low-cost 3D-printed sliding components in metal-polymer friction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of contact strength and tribological property tests of spare parts made of a popular resin using a 3D DLP printing technology. Two printer models by the same manufacturer were used in the study. The post-processing technique, which shapes the final functional properties, was diversified. Surface performance properties were compared, i.e. Shore hardness, indentation hardness, Martens hardness, elastic modulus, and parameters related to surface creep and relaxation. Tribological durability in rotary motion and tribological wear in reciprocating linear motion were also evaluated using micro- and nanotribometers. This was followed by surface analyses of the friction track of the analysed materials using microscopic methods: a scanning electron microscope, a WLI interferometric microscope, and an optical microscope. The results were statistically processed and the relationship between the parameters determined in the indentation test was determined.
Rocznik
Strony
361--376
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Tribology Center, Łukasiewicz Research Network-Institute for Sustainable Technologies (L-ITEE), ul. Pułaskiego 6/10, 26-600 Radom, Poland
  • Tribology Center, Łukasiewicz Research Network-Institute for Sustainable Technologies (L-ITEE), ul. Pułaskiego 6/10, 26-600 Radom, Poland
  • Department of Craniofacial Anomalies, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
  • Department of Mechanical Engineering and Automation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
  • Department of Automation, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Tribology Center, Łukasiewicz Research Network-Institute for Sustainable Technologies (L-ITEE), ul. Pułaskiego 6/10, 26-600 Radom, Poland
  • Tribology Center, Łukasiewicz Research Network-Institute for Sustainable Technologies (L-ITEE), ul. Pułaskiego 6/10, 26-600 Radom, Poland
  • Tribology Center, Łukasiewicz Research Network-Institute for Sustainable Technologies (L-ITEE), ul. Pułaskiego 6/10, 26-600 Radom, Poland
  • Department of Mechanical Engineering and Automation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
autor
  • Faculty of Transport and Computer Science, WSEI University, Projektowa 4, 20-209 Lublin, Poland
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
Bibliografia
  • 1.Ahangar, P., Cooke, M. E., Weber, M. H., & Rosenzweig, D. H., 2019. Current biomedical applications of 3D printing and additive manufacturing. Applied sciences, 9(8), 1713. DOI: 10.3390/app9081713
  • 2. Abdelbary, A., 2014. Sliding mechanics of polymers. DOI: 10.1533/9781782421788.37 Abdelbary, A., 2015. Wear of polymers and composites. Woodhead Publishing. DOI: 10.1533/9781782421788.1
  • 3. Ashby, M.F., 2011a. Materials selection—the basics, Materials Selection in Mechanical Design, 97-124. Ashby, M., Shercliff, H., Cebon, D., 2011b. Inżynieria materiałowa. Galaktyka, Łodź. Aziz, R., Haq, M. I. U., & Raina, A., 2020. Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polymer Testing, 85: 106434.
  • 4. Boparai, K., Singh, R., & Singh, H., 2015. Comparison of tribological behaviour for Nylon6-Al-Al2O3 and ABS parts fabricated by fused deposition modelling: This paper reports a low cost composite material that is more wear-resistant than conventional ABS. Virtual and Physical Prototyping, 10(2), 59-66. DOI: 10.1080/17452759.2015.1037402
  • 5. Capanidis, D., 2013. Mechanizm tarcia i zużywania wieloskładnikowych kompozytów na osnowie polioksymetylenu. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 7-10. Carneiro, O. S., Silva, A. F., & Gomes, R., 2015. Fused deposition modeling with polypropylene. Materials & Design, 83, 768-776. DOI: 10.1016/j.matdes.2015.06.053
  • 6. Catalin, M., 2019. Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Materials Science and Technology, 35:9: 1007-1015. DOI: 10.1080/02670836.2019.1596370
  • 7. Dangnan, F., Espejo, C., Liskiewicz, T., Gester, M., & Neville, A., 2020. Friction and wear of additive manufactured polymers in dry contact. Journal of Manufacturing Processes, 59: 238-247. DOI: 10.1016/j.jmapro.2020.09.051
  • 8. Dawoud, M., Taha, I., & Ebeid, S. J., 2015 Effect of processing parameters and graphite content on the tribological behaviour of 3D printed acrylonitrile butadiene styrene: Einfluss von Prozessparametern und Graphitgehalt auf das tribologische Verhalten von 3D‐Druck Acrylnitril‐Butadien‐Styrol Bauteilen. Materialwissenschaft und Werkstofftechnik, 46(12), 1185-1195. DOI: 10.1002/mawe. 201500450
  • 9.Farahani, R.D., Dubé, M., & Therriault, D., 2016. Three‐dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Advanced materials, 28(28), 5794-5821. DOI: 10.1002/adma.201506215
  • 10. Gil, L., Przystupa, K., Pieniak, D., Kozłowski, E., Antosz, K., Gauda, K., & Izdebski, P., 2021. Influence of contamination of gear oils in relation to time of operation on their lubricity. Applied Sciences, 11(24). DOI: 10.3390/app112411835
  • 11. Grymak, J.N. Waddell, J.M. Aarts, S. Ma, J.J.E. 2022. Choi Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes J. Mech. Behav. Biomed. Mater., 126. DOI: 10.1016/j.jmbbm.2021.105053
  • 12. Hanon, M.M., Ghaly, A., Zsidai, L., & Klebert, S., 2022. Tribological characteristics of digital light processing (DLP) 3D printed graphene/resin composite: Influence of graphene presence and process settings. Materials & Design, 218. DOI: 10.1016/j.matdes.2022.110718
  • 13.Hardiman, M., Vaughan, T. J., & McCarthy, C. T., 2016. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polymer Testing, 52, 157-166. DOI: 10.1016/j.polymertesting.2016.04.003
  • 14. https://3dpartnershop.com/product/phrozen-standard-resinbeige/?v=9b7d173b068d, November 2023.
  • 15. https://fepshop.com/shop/printers/phrozen-shuffle-lite, November 2023.
  • 16. https://fepshop.com/shop/materials/phrozenstandard-beige-0-5kg, November 2023.
  • 17. https://phrozen3d.com/en-fr/pages/wash-cure-kit, November 2023.
  • 18. https://www.3djake.pl/phrozen/sonic-mini, November 2023.
  • 19. https://www.3dprintersbay.com/phrozen-beige-flex, November 2023.
  • 20. https://www.igus.pl/info/3d-printing-resin-dlp, November 2023.
  • 21. https://www.igus.pl/product/21071?artNr=I3000-PR-1000, November 2023.
  • 22. Jabłońska, M., Jurczak, W., Ozimina, D., Adamiak, M., 2023. Increasing the operational reliability of a ship by using a composite impeller in the event of hydrophore pump failure. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 25(1). DOI: 10.17531/ein.2023.1.18
  • 23. Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., & Haq, M. I. U., 2022. 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3, 33-42. DOI: 10.1016/j.susoc.2021.09.004
  • 24. Kałdoński, T., 2020. Abrasive wearing processes of hydraulic precise pairs. Redakcja Wydawnictw WAT.
  • 25. Kim, J.E., Choi, W.-H., Lee, D., Shin, Y., Park, S.-H., Roh, B.-D., Kim, D., 2021. Color and translucency stability of three-Dimensional printable dental materials for crown and bridge restorations. Materials, 14, 650. DOI: 10.3390/ma14030650
  • 26.Kowalewski, P., 2019. Tarcie polimerów termoplastycznych w warunkach złożonego ruchu. OWPWr, Wrocław.
  • 27. Krzyzak, A., Racinowski, D., Szczepaniak, R., Kosicka, E., 2023. An assessment of the reliability of CFRP composites used in nodes of friction after impact of UV-A impacts and thermal shocks, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 25(4). DOI: 10.17531/ein/174221
  • 28. Lawrowski, Z., 2008. Tribologia. Red. Wrocław: Politechnika Wrocławska, 327.
  • 29. LeBlanc, J., Shattuck, L., Warner, E., Javier, C., Chenwi, I., Chu, T., & Shukla, A., 2023. Effect of high pressure salt water absorption on the mechanical characteristics of additively manufactured polymers. International Journal of Lightweight Materials and Manufacture, 6(3), 379- 391. DOI: 10.1016/j.ijlmm.2022.12.001
  • 30. Lim, W.B., Bae, J. H., Seo, M. J., Min, J. G., Lee, J. H., Kim, S. H., ... & Huh, P., 2022. A novel UV-curable acryl-polyurethane for flexural 3D printing architectures. Additive Manufacturing, 51, 102625. DOI: org/10.1016/j.addma.2022.102625
  • 31. Matthews, A., Leyland, A., 2006. The role of nanocomposite coatings in surface engineering. In 5th International Surface Engineering Conference, 1-5, ASM International.
  • 32. Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. J. A. M., 2018. Additive manufacturing—A review of 4D printing and future applications. Additive Manufacturing, 24, 606-626. DOI: 10.1016/j.addma.2018.10.038
  • 33. Mohammed, J.S., 2016. Applications of 3D printing technologies in oceanography, Methods Oceanogr., 17, 97–117.
  • 34. Mohamed, O.A., Mohamed, O. A., Masood, S. H., Bhowmik, J. L., & Somers, A. E., 2017. Investigation on the tribological behavior and wear mechanism of parts processed by fused deposition additive manufacturing process. Journal of Manufacturing Processes, 29, 149-159. DOI: 10.1016/j.jmapro.2017.07.019
  • 35. Müller, M., Valášek, P., Kolář, V., Šleger, V., Gürdil, G. A. K., Hromasová, M., ... & Pexa, M., 2019. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers, 11(7). DOI: 10.3390/polym11071106
  • 36. Myshkin, N.K., Petrokovets, M. I., Kovalev, A. V., 2005. Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribology International, 38(11-12), 910-921. DOI: 10.1016/j.triboint.2005.07.016
  • 37. Nishimori, F., Ikeshima, D., Kanamori, K., Yamamura, H., & Yonezu, A., 2021. Characterization of the surface degraded layer of polymers using an indentation method. Materials Today Communications, 26, 101873. DOI: 10.1016/j.mtcomm.2020.101873
  • 38. Oliver, W.C., & Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of materials research, 19(1), 3-20.
  • 39. Ozimina D., Ryniewicz A., 2013. Eksploatacja systemów tribologicznych. T. 1, Znaczenie tribologii w eksploatacji obiektów technicznych, Kielce. Pieniak, D., Gauda, K., 2020a. Indentation Hardness and Tribological Wear in Conditions of Sliding Friction of the Surface Layer of Composites Based on Methacrylate Resins with Ceramic Nanofiller. Advances in Science and Technology Research Journal, 14(2), 112-119. DOI: 10.12913/22998624/118867
  • 40. Pieniak, D., Niewczas, A., Walczak, A., Łępicka, M., Grądzka-Dahlke, M., Maciejewski, R., Kordos, P., 2020b, The effect of thermal stresses on the functional properties of various dental composites. Tribol. Int., 152, 106509, DOI: 10.1016/j.triboint.2020.106509.
  • 41. PN-EN ISO 14577-1:2015-09 Metale - Instrumentalna próba wciskania wgłębnika do określania twardości i innych własności materiałów.
  • 42. PN-EN ISO 868:2005 Tworzywa sztuczne i ebonit - Oznaczanie twardości metodą wciskania z zastosowaniem twardościomierza (twardość metodą Shore'a).
  • 43. Pokorska, I., Tacikowski, M., Moskalow, M., & Wierzchoń, T., 2014. Mikrostruktura i właściwości dyfuzyjnych warstw na bazie chromu na stopie magnezu AZ91D. Inżynieria Materiałowa, 35, 6, 540-543. Popov, V.L., 2010. Contact mechanics and friction. Berlin: Springer Berlin Heidelberg, 231-253. DOI: 10.1007/978-3-642-10803-7
  • 44. Qu, A., & Li, F., 2023. Influence of 3D printing on compressor impeller fatigue crack propagation life. International Journal of Mechanical Sciences, 245. DOI: 10.1016/j.ijmecsci.2023.108107
  • 45. Ramadan, M. A., 2022. Tribological investigations of 3D Printed Polymers and Their Applications. A Review. Journal of Modern Industry and Manufacturing, 1(1), 1-9. DOI: 10.53964/jmim.2022002 Rashid,
  • 46. A. A., & Koç, M., 2021. Fused filament fabrication process: a review of numerical simulation techniques. Polymers, 13(20). DOI: 10.3390/polym13203534
  • 47. Rezaie, F., Farshbaf, M., Dahri, M., Masjedi, M., Maleki, R., Amini, F., Wirth, J., Moharamzadeh, K., Weber, F. E., Tayebi, L., 2023. 3D Printing of Dental Prostheses: Current and Emerging Applications. J. Compos. Sci., 7, 80. DOI: 10.3390/jcs7020080
  • 48. Romek, D., Selech, J., Ulbrich, D. P., Felusiak, A., Kieruj, P., Janeba-Bartoszewicz, E., 2020. The impact of padding weld shape of agricultural machinery tools on their abrasive wear. Tribologia, 2, 55-62.
  • 49. Rouf, S., Raina, A., Haq, M. I. U., Naveed, N., Jeganmohan, S., & Kichloo, A. F., 2022. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158. DOI: 10.1016/j.aiepr.2022.02.001
  • 50. Shafi, W.K., Raina, A., Ul Haq, M. I., 2018. Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication. Tribology-Materials, Surfaces & Interfaces, 12(1), 27-43. DOI: 10.1080/17515831.2018.1435343
  • 51. Skoć, A., Spałek, J., Markusik, S., 2008. Podstawy konstrukcji maszyn Vol. 2. ed. Warszawa: Wydawnictwo WNT, 603. Smal, T., 2006. Naprawa uszkodzeń bojowych sprzętu wojskowego z zastosowaniem kompozytów klejowych. Eksploatacja Uzbrojenia i Sprzętu Wojskowego. Problemy Obsługiwania Techniki Lądowej w Siłach Zbrojnych RP. Wrocław, 205-210.
  • 52. Sneddon, I.N., 1965. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International journal of engineering science, 3(1), 47-57.
  • 53. Snyder, T., Mick, J., Weislogel, M., Beyl, M., Buchholz, A., Molina, E., & Vu, J., 2015. Single-build additive manufacturing of autonomous machines. NIP & Digital Fabrication Conference. Society for Imaging Science and Technology, 31, 293-298.
  • 54. Topolinski, T., 1997. Analiza teoretyczna i badania kumulacji uszkodzen zmeczeniowych konstrukcyjnych kompozytow polimerowych. Rozprawy. Akademia Techniczno-Rolnicza w Bydgoszczy, 82, 1-112.
  • 55. Wang, Q., Wang, Y., Wang, H., Fan, N., Yan, F., 2016. Experimental investigation on tribological behavior of several polymer materials under reciprocating sliding and fretting wear conditions. Tribology International, 73-82. DOI: 10.1016/j.triboint.2016.08.030
  • 56. Wang, Y., Li, X., Chen, Y., Zhang, C., 2021. Strain rate dependent mechanical properties of 3D printed polymer materials using the DLP technique. Additive Manufacturing, 47. DOI: 10.1016/j.addma.2021.102368
  • 57. Wu, G.H., Hsu, S.H., 2015. Polymeric-based 3D printing for tissue engineering. Journal of medical and biological engineering, 35, 285-292. DOI: 10.1007/s40846-015-0038-3
  • 58. Wu, P., Yu, T., Li, G., Chen, M., 2023. Magnetic field-assisted DLP of CIPs/resin composites: Mechanical properties, anisotropic magnetic performance and wear behavior. Wear, 523. DOI: 10.1016/j.wear.2023.204800
  • 59. Zhang, B., Huang, W., Wang, J., Wang, X., 2013e al. Comparison of the effects of surface texture on the surfaces of steel and UHMWPE. Tribology International, 65, 138-145. DOI: 10.1016/j.triboint.2013.01.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27b95135-dd9e-4345-8d98-5580f3d0f85a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.