Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a case study of pre- and mid- surgery supplies in the field of maxillofacial surgery. The operation involved the process of resection within the mandible and the implantation of a joint endoprosthesis. The methodology is based on medical data in DICOM format and a maxillofacial model in STL format obtained through structural scanning. The stages of work included processing medical data involving medical imaging segmentation, structural scanning, model design and their production using 3D printing. SLA technology and various materials for each model were used in the process. The entire process underwent clinical validation during the mandibular reconstruction surgery and analysis of the obtained results. Satisfactory maxillofacial models were obtained, allowing for precise positioning of the endoprosthesis and planning of the surgical procedure, while the individually tailored guides and templates were used during the surgery. The models significantly improved the quality of the surgery, shortened its duration, and accelerated the patient's recovery.
Wydawca
Rocznik
Tom
Strony
114--125
Opis fizyczny
Bibliogr. 47 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
- Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
- Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
- Poznan University of Medical Sciences, Collegium Maius, ul. Fredry 10, 61-701 Poznań, Poland
autor
- Poznan University of Medical Sciences, Collegium Maius, ul. Fredry 10, 61-701 Poznań, Poland
Bibliografia
- 1. Singh HN, Agrawal S, Kuthe AM. Design of customized implants and 3D printing of symmetric and asymmetric cranial cavities. J Mech Behav Biomed Mater 2023; 146: 106061. https://doi.org/10.1016/j.jmbbm.2023.106061.
- 2. Moiduddin K, Al-Ahmari A, Kindi MAl, et al. Customized porous implants by additive manufacturing for zygomatic reconstruction. Biocybern Biomed Eng 2016; 36: 719–730. https://doi.org/10.1016/j.bbe.2016.07.005.
- 3. Safali S, Berk T, Makelov B, et al. The Possibilities of Personalized 3D Printed Implants—A Case Series Study. Medicina (BAires) 2023; 59: 249. https://doi.org/10.3390/medicina59020249.
- 4. Maroti P, Schlegl AT, Nagy B, et al. Additive manufacturing in limb prosthetics and orthotics: the past, present and future of 3D printing orthopedic assistive devices. Medical Additive Manufacturing: Concepts and Fundamentals 2024; 179–207. http://dx.doi.org/10.1016/B978-0-323-95383-2.00028-7.
- 5. Boolos M, Corbin S, Herrmann A, et al. 3D printed orthotic leg brace with movement assist. Annals of 3D Printed Medicine 2022; 7: 100062. https://doi.org/10.1016/j.stlm.2022.100062.
- 6. Leite M, Soares B, Lopes V, et al. Design for personalized medicine in orthotics and prosthetics. Procedia CIRP 2019; 84: 457–461. https://doi.org/10.1016/j.procir.2019.04.254.
- 7. Thomas A, Muñecas T. A rehabilitation protocol for the use of a 3D-printed prosthetic hand in pediatrics: A case report. Journal of Hand Therapy 2023; 36: 967–973. https://doi.org/10.1016/j.jht.2022.10.010.
- 8. Tavangarian F, Proano C. Additive Manufacturing for the Fabrication of Pylon in Lower Limb Prosthesis. Contributed Papers from MS&T17. MS&T18, 2018, pp. 852–859. https://doi.org/10.7449/2018/MST2018852859.
- 9. Seiti M, Ginestra P. Additive Manufacturing for orthopedic applications: Case study on market impact. Procedia Comput Sci 2022; 217: 737–745. http://dx.doi.org/10.1016/j.procs.2022.12.270.
- 10. Mobarak MH, Islam MA, Hossain N, et al. Recent advances of additive manufacturing in implant fabrication–A review. Applied Surface Science Advances 2023; 18: 100462. https://doi.org/10.1016/j.apsadv.2023.100462.
- 11. Sheoran AJ, Kumar H, Arora PK, et al. Bio-Medical applications of Additive Manufacturing: A Review. Procedia Manuf 2020; 51: 663–670. http://dx.doi.org/10.1016/j.promfg.2020.10.093.
- 12. Kumar R, Kumar M, Chohan JS. The role of additive manufacturing for biomedical applications: A critical review. J Manuf Process 2021; 64: 828–850. https://doi.org/10.1016/j.jmapro.2021.02.022.
- 13. Lai J, Wang C, Wang M. 3D printing in biomedical engineering: Processes, materials, and applications. Appl Phys Rev; 8. Epub ahead of print 1 June 2021. http://dx.doi.org/10.1063/5.0024177.
- 14. Żukowska M, Rad MA, Górski F. Additive Manufacturing of 3D Anatomical Models—Review of Processes, Materials and Applications. Materials 2023; 16: 880. https://doi.org/10.3390/ma16020880.
- 15. Cohen A, Laviv A, Berman P, et al. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2009; 108: 661–666. https://doi.org/10.1016/j.tripleo.2009.05.023.
- 16. Sharma N, Cao S, Msallem B, et al. Effects of Steam Sterilization on 3D Printed Biocompatible Resin Materials for Surgical Guides—An Accuracy Assessment Study. Journal of Clinical Medicine 2020; 9: 1506. https://doi.org/10.3390/jcm9051506.
- 17. Bozkurt Y, Karayel E. 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology 2021; 14: 1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050.
- 18. Xu X, Wang H, Shen L, et al. Application and evaluation of fused deposition modeling technique in customized medical products. Int J Pharm 2023; 640: 122999. https://doi.org/10.1016/j.ijpharm.2023.122999.
- 19. Rahim TNAT, Abdullah AM, Akil HM, et al. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polym Lett 2017; 11: 963–982. http://dx.doi.org/10.3144/expresspolymlett.2017.92.
- 20. Awad A, Gaisford S, Basit AW. Fused deposition modelling: Advances in engineering and medicine. AAPS Advances in the Pharmaceutical Sciences Series. Springer Verlag, 2018; 107–132. http://dx.doi.org/10.1007/978-3-319-90755-0_6.
- 21. Unkovskiy A, Schmidt F, Beuer F, et al. Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis. J Clin Med 2021; 10: 1070. https://doi.org/10.3390/jcm10051070.
- 22. Bajaj P, Chan V, Jeong JH, et al. 3-D biofabrication using stereolithography for biology and medicine. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012; 6805–6808. https://doi.org/10.1109/embc.2012.6347557.
- 23. Raman R, Bashir R. Stereolithographic 3D bioprinting for biomedical applications. In: Essentials of 3D Biofabrication and Translation. Elsevier Inc., 2015; 89–121. https://doi.org/10.1016/B978-0-12-800972-7.00006-2.
- 24. Kushwaha AK, Rahman MH, Hart D, et al. Fundamentals of stereolithography: techniques, properties, and applications. In: Tribology of Additively Manufactured Materials: Fundamentals, Modeling, and Applications. Elsevier, 2022; 87–106. http://dx.doi.org/10.1016/B978-0-12-821328-5.00003-2.
- 25. Abdulhameed O, Al-Ahmari A, Ameen W, et al. Additive manufacturing: Challenges, trends, and applications. Advances in Mechanical Engineering 2019; 11: 1–27. http://dx.doi.org/10.1177/1687814018822880.
- 26. Ghilan A, Chiriac AP, Nita LE, et al. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. J Polym Environ 2020; 28: 1345–1367. https://doi.org/10.1007/s10924-020-01722-x.
- 27. Schneider KH, Oberoi G, Unger E, et al. Medical 3D printing with polyjet technology: effect of material type and printing orientation on printability, surface structure and cytotoxicity. 3D Print Med 2023; 9: 27. https://doi.org/10.1186/s41205-023-00190-y.
- 28. Pan T, Zhu W, Yan C, et al. Selective laser sintering 3D printing of biomedical polymer materials. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering 2016; 32: 178–183. http://dx.doi.org/10.16865/j.cnki.1000-7555.2016.03.033.
- 29. Saffarzadeh M, Gillispie GJ, Brown P. Selective Laser Sintering (SLS) rapid prototyping technology: A review of medical applications. Proceedings of the 53rd Annual Rocky Mountain Bioengineering Symposium, RMBS 2016 and 53rd International ISA Biomedical Sciences Instrumentation Symposium 2016; 142–149.
- 30. Riza SH, Masood SH, Rashid RAR, et al. Selective laser sintering in biomedical manufacturing. In: Metallic Biomaterials Processing and Medical Device Manufacturing. Elsevier, 2020, pp. 193–233. http://dx.doi.org/10.1016/B978-0-08-102965-7.00006-0.
- 31. Gebhardt A, Hötter J-S. Additive Manufacturing. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2016. Epub ahead of print 2016. DOI: 10.1007/978-1-56990-583-8. http://dx.doi.org/10.1007/978-1-56990-583-8.
- 32. Zoabi A, Redenski I, Oren D, et al. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. Journal of Clinical Medicine 2022; 11: 2385. https://doi.org/10.3390/jcm11092385.
- 33. Ostaș D, Almășan O, Ileșan RR, et al. Point-of-Care Virtual Surgical Planning and 3D Printing in Oral and Cranio-Maxillofacial Surgery: A Narrative Review. J Clin Med 2022; 11: 6625. https://doi.org/10.3390/jcm11226625.
- 34. Louvrier A, Marty P, Barrabé A, et al. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofac Surg 2017; 118: 206–212. https://doi.org/10.1016/j.jormas.2017.07.002.
- 35. Assari A. Usability Of Three-dimensional Printing in Maxillofacial Surgery: A Narrative Review. Open Dent J; 17. Epub ahead of print 2023. https://doi.org/10.2174/18742106-v17-e230508-2023-37.
- 36. Yang W, Choi WS, Wong MC-M, et al. Three-Dimensionally Printed Patient-Specific Surgical Plates Increase Accuracy of Oncologic Head and Neck Reconstruction Versus Conventional Surgical Plates: A Comparative Study. Ann Surg Oncol 2021; 28: 363–375. https://doi.org/10.1245/s10434-020-08732-y.
- 37. Yang W, Choi WS, Leung YY, et al. Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: A prospective pilot study. Oral Oncol 2018; 78: 31–36. https://doi.org/10.1016/j.oraloncology.2018.01.005.
- 38. Abo Sharkh H, Makhoul N. In-House Surgeon-Led Virtual Surgical Planning for Maxillofacial Reconstruction. Journal of Oral and Maxillofacial Surgery 2020; 78: 651–660. https://doi.org/10.1016/j.joms.2019.11.013.
- 39. Nyirjesy SC, Heller M, von Windheim N, et al. The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3-dimensional printing in head and neck oncologic surgery: A review and future directions. Oral Oncol 2022; 132: 105976. https://doi.org/10.1016/j.oraloncology.2022.105976.
- 40. Hadad H, Boos Lima FB, Shirinbak I, et al. The Impact of 3D Printing on Oral and Maxillofacial Surgery. J 3D Print Med; 7. Epub ahead of print 30 June 2023. http://dx.doi.org/10.2217/3dp-2022-0025.
- 41. Li Y, Liu H, Wang C, et al. 3D printing titanium grid scaffold facilitates osteogenesis in mandibular segmental defects. npj Regenerative Medicine 2023; 8: 1–11. https://doi.org/10.1038/s41536-023-00308-0.
- 42. Zhong C, Zhao Y, Xing H, et al. Assembly of 3D-printed Ti scaffold and free vascularized fibula using a customized Ti plate for the reconstruction of mandibular defects. Biodes Manuf 2022; 5: 424–429. http://dx.doi.org/10.1007/s42242-021-00181-0.
- 43. Lim HK, Choi YJ, Choi WC, et al. Reconstruction of maxillofacial bone defects using patient-specific long-lasting titanium implants. Scientific Reports 2022; 12: 1–12. https://doi.org/10.1038/s41598-022-11200-0.
- 44. Fan B, Chen H, Sun YJ, et al. Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures. Graefe’s Archive for Clinical and Experimental Ophthalmology 2017; 255: 2051–2057. https://doi.org/10.1007/s00417-017-3766-y.
- 45. Murray-Douglass A, Snoswell C, Winter C, et al. Three-dimensional (3D) printing for post-traumatic orbital reconstruction, a systematic review and meta-analysis. British Journal of Oral and Maxillofacial Surgery 2022; 60: 1176–1183. https://doi.org/10.1016/j.bjoms.2022.07.001.
- 46. Weadock WJ, Heisel CJ, Kahana A, et al. Use of 3D Printed Models to Create Molds for Shaping Implants for Surgical Repair of Orbital Fractures. Acad Radiol 2020; 27: 536–542. https://doi.org/10.1016/j.acra.2019.06.023.
- 47. Kang S, Kwon J, Ahn CJ, et al. Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction. Eye 2018; 32: 1864–1870. https://doi.org/10.1038/s41433-018-0193-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27b843e7-4077-4c06-95d7-686e39e3644f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.