PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the stability analysis for a semi-analytical scheme for solving the fractional order blood ethanol concentration system using LVIM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this article is to present the Laplace variational iteration method, which combines the VIM with the Laplace transform approach (LVIM). This combination will result in a better and more quickly convergent sequence since nonlinear fractional differential equations (FDEs) cannot be solved using the Laplace transform. With the use of the fixed point theory, the stability analysis is specifically discussed and examined. The blood ethanol concentration system is solved numerically by using the suggested scheme. This model can be represented by a system of FDEs. The investigation will emploi the Caputo-Fabrizio fractional derivative. To provide a more in-depth study of this model, we have taken it in its fractional form so that we can more accurately follow the behavior of the solution in the future and history based on the memory effect of fractional derivatives. We determine the accuracy and efficiency of the provided process by evaluating the absolute errors, and a comparison with the existing published work. The results show that the approach is a useful tool for simulating this model.
Rocznik
Strony
7--18
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Islamic University of Madinah Medina, KSA
  • Department of Mathematics, Faculty of Science, Cairo University Giza, Egypt
  • Department of Mathematics and Statistics, College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, KSA
  • Department of Mathematics, Faculty of Science, Benha University Benha, Egypt
Bibliografia
  • [1] Kilbas, S.G., & Marichev, O.I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon & Breach.
  • [2] Adel, M., Sweilam, N.H., Khader, M.M., Ahmed, S.M., Ahmad, H., & Botmart, T. (2022). Numerical simulation using the non-standard weighted average FDM for the 2Dim variableorder Cable equation. Results in Physics, 39, 105682. DOI: 10.1016/j.rinp.2022.105682.
  • [3] Adel, M., Khader, M.M., & Algelany, S. (2023). High-dimensional chaotic Lorenz system: Numerical treated using Changhee polynomials of the Appell type. Fractal and Fractional, 7(5),398.
  • [4] Mirza, I.A., & Vieru, D. (2017). Fundamental solutions to advection-diffusion equation with time-fractional Caputo-Fabrizio derivative. Computer and Mathematics with Applications, 73(1), 1-10.
  • [5] Caputo, M., & Fabrizio, A. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications, 1(2), 1-13.
  • [6] Aguilar, J.G. (2017). Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Physica A: Statistical Mechanics and its Applications, 465, 562-572.
  • [7] Khan, M.A., Ullah, S., Okosun, K.O., & Shah, K. (2018). A fractional order pine wilt disease model with Caputo-Fabrizio derivative. Advances in Difference Equations, 410, 1-18.
  • [8] Khader, M.M., & Saad, K.M. (2020). Numerical treatment for studying the blood ethanol concentration systems with different forms of fractional derivatives. International Journal of Modern Physics C, 31(3), 2050044. DOI: 10.1142/S0129183120500448
  • [9] Ludwin, C. (2011). Blood alcohol content. Undergraduate Journal of Mathematical Modeling, 3(2), 1-10.
  • [10] Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M., & Baleanu, D. (2019). Fractional modeling of blood ethanol concentration system with real data application. Chaos, 29, 1-15.
  • [11] Sweilam, N.H., & Al-Bar, F. (2007). Variational iteration method for coupled nonlinear Schrödinger equations. Computers and Mathematics with Applications, 54(8), 993-999.
  • [12] Iqbal, J., Shabbir, K., & Guran, L. (2021). Semi-analytical solutions of some nonlinear-time fractional models using variational iteration Laplace transform method. Journal of Function Spaces, 2021, 8345682.
  • [13] Morales-Delgado, V.F., Gomez-Aguilar, J.F., Yepez-Martinez, H., Baleanu, D., Jimenez, R.F., & Olivares-Peregrino, V.H. (2016). Laplace homotopy analysis method for solving linear PDEs using a fractional derivative with and without kernel singular. Advances in Difference Equations, 2016, 164.
  • [14] Karakoc, S.G., & Ali, K.K. (2021). Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation. Tbilisi Mathematical Journal, 14(2), 33-50.
  • [15] Zhang, J., Wang, J., & Zhou, Y. (2020). Numerical analysis for time-fractional Schrödinger equation on two space dimensions. Advances in Difference Equations, 53, 1-16.
  • [16] Zhang, T., & Yongkun, L. (2022). Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. Applied Mathematics Letters, 124, 107709.
  • [17] Dong, Y., Tang, X., & Yuan, Y. (2020). Principled reward shaping for reinforcement learning via Lyapunov stability theory. Neurocomputing, 393, 83-90.
  • [18] Li, L., & Chen, W. (2020). Exponential stability analysis of quaternion-valued neural networks with proportional delays and linear threshold neurons: Continuous-time and discrete-time cases. Neurocomputing, 381, 152-166. DOI: 10.1016/j.neucom.2019.09.051.
  • [19] Kreyszig, E. (1991). Introductory Functional Analysis with Applications. Hoboken: John Wiley Sons.
  • [20] He, J.H. (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167(2), 57-68.
  • [21] Iqbal, J., Shabbir, K., & Guran, L. (2022). Stability analysis and computational interpretation of an effective semi-analytical scheme for fractional order non-linear partial differential equations. Fractal and Fractional, 6, 293. DOI: 10.3390/fractalfract6070393.
  • [22] Jafari, H., & Alipoor, A. (2011). A new method for calculating the general Lagrange multiplier in the variational iteration method. Numerical Methods for PDEs, 27(4), 996-1001.
  • [23] https://en.wikipedia.org/wiki/Blood-alcohol-content#cite-note-Med2019-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27b7fa6d-1925-40a4-9420-341ec6642652
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.