PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of fixed adsorption bed height on adsorption of gaseous mixture of volatile organic compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
The influence of a fixed adsorption bed height on the adsorption process was studied using acetone, ethyl acetate, toluene, and n-butyl acetate as a gaseous adsorbate mixture. All experiments were conducted under the same gas flow and temperature conditions. Concentrations of adsorbates were monitored using gas chromatography with a flame ionization detector. Activated carbon WG-12 (Grand Activated Sp. z o.o) was selected as the adsorbent, and the following heights of the fixed adsorption bed were used: 0.8, 1.6, 3.2, and 4.8 cm. The results of the study allowed to deduce that as the height of the fixed adsorption bed increased, the degree of displacement of adsorbate molecules from the bed strengthened. In addition, it was found that both the bed breakthrough time increased linearly with a height rise of the fixed adsorption bed. The process carried out on a fixed adsorption bed with a height of 0.8 cm was characterized by an undeveloped mass transfer zone, as well as the complete displacement of the most volatile components (acetone and ethyl acetate). The utilization rate of the fixed adsorption bed also increased as the height of the adsorption bed went up. However, at a certain bed height, the bed breakthrough curves were formed and the adsorption capacity did not change significantly, solely the bed breakthrough time increased.
Rocznik
Strony
art. no. e47
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., tab.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Abd A.A., Othman M.R., Kim J., 2021. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. Environ. Sci. and Pollut. Res., 28, 43329–43364. DOI: 10.1007/s11356-021-15121-9.
  • 2. Cruz S.L., Rivera-García M.T., Woodward J. J., 2014. Review of toluene actions: clinical evidence, animal studies, and molecular targets. J. Drug Alcohol Res., 3, 1–8. DOI: 10.4303/jdar/235840.
  • 3. Cui P., Schito G., Cui Q., 2020. VOC emissions from asphalt pavement and health risks to construction workers. J. Clean. Prod., 244, 118757. DOI: 10.1016/j.jclepro.2019.118757.
  • 4. Ding Y., Lu J., Liu Z., Li W., Chen J., 2020. Volatile organic compounds in Shihezi, China, during the heating season: pollution characteristics, source apportionment, and health risk assessment. Environ. Sci. and Pollut. Res., 27, 16439–16450. DOI: 10.1007/s11356-020-08132-5.
  • 5. El Mohajir A., Castro-Gutiérrez J., Canevesi R.L.S., Bezverkhyy I., Weber G., Bellat J.-P., Berger F., Celzard A., Fierro V., Sanchez J.-B., 2021. Novel porous carbon material for the detection of traces of volatile organic compounds in indoor air. ACS
  • 6. Appl. Mater. Interfaces, 13, 40088–40097. DOI: 10.1021/acsami.1c10430.
  • 7. Gupta K.N., Rao N.J., Agarwal G.K., 2013. Vapor phase adsorption of xylene on granular activated carbon – experimental andtheoretical breakthrough curves. Indian J. Chem. Technol., 20, 26–32.
  • 8. Gupta K.N., Rao N.J., Agarwal G.K., 2015. Gaseous phase adsorption of volatile organic compounds on granular activated carbon. Chem. Eng. Commun., 202, 384–401. DOI: 10.1080/00986445.2013.840827.
  • 9. Gupta K.N., Rao N.J., Agarwal G.K., Kumar R., Rao N.J., Agarwal G.K., 2011. Adsorption of toluene on granular activated carbon. Int. J. Chem. Eng. Appl., 2, 310–313. DOI: 10.7763/ijcea.2011.v2.124.
  • 10. He C., Cheng J., Zhang X., Douthwaite M., Pattisson S., Hao Z., 2019. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev., 119, 4471–4568. DOI: 10.1021/acs. chem-rev.8b00408.
  • 11. Helen G.S., Liakoni E., Nardone N., Addo N., Jacob P., Benowitz N. L., 2020. Comparison of systemic exposure to toxic and/or carcinogenic volatile organic compounds (VOC) during vaping, smoking, and abstention. Cancer Prev. Res., 13, 153–162. DOI: 10.1158/1940-6207.CAPR-19-0356.
  • 12. Jurkiewicz M., Musik M., Pełech R., 2023. Adsorption of a four-component mixture of volatile organic compound vapors on modified activated carbons. Ind. Eng. Chem. Res., 62, 3716–3723. DOI: 10.1021/acs.iecr.2c04572.
  • 13. Jurkiewicz M., Musik M., Pełech, R., 2022. Competitive adsorption of a binary VOC mixture from the gas phase onto activated carbon modified with malic acid. Ind. Eng. Chem. Res., 61, 11947–11952. DOI: 10.1021/acs.iecr.2c01621.
  • 14. Li A.J., Pal V.K., Kannan K., 2021. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ. Chem. Ecotoxicol., 3, 91–116. DOI: 10.1016/j.enceco.2021.01.001.
  • 15. Li G., Wang M., Chen X., Li X., 2017. Adsorption performance for the removal of Cu(II) on the ammonium acetate modified sugarcane bagasse. Nat. Environ. Pollut. Technol., 16, 843–848.
  • 16. Lim A., Chew J.J., Ngu L.H., Ismadji S., Khaerudini D.S., Sunarso J., 2020. Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution. ACS Omega, 5, 28673– 28683. DOI: 10.1021/acsomega.0c03811.
  • 17. Mahmoodlu M.G., Pontedeiro E.M., Pérez Guerrero J.S., Raoof A., Hassanizadeh S.M., van Genuchten M.T., 2017. Dissolution kinetics of volatile organic compound vapors in water: an integrated experimental and computational study. J. Contam. Hydrol., 196, 43–51. DOI: 10.1016/j.jconhyd.2016. 12.004.
  • 18. Marć M., Śmiełowska M., Namieśnik J., Zabiegała B., 2018. Indoor air quality of everyday use spaces dedicated to specific purposes – a review. Environ. Sci. Pollut. Res., 25, 2065–2082. DOI: 10.1007/s11356-017-0839-8.
  • 19. Milchert E., Goc W., Pełech R., 2000. Adsorption of CCl4 from aqueous solution on activated carbons. Adsorpt. Sci. Technol., 18, 823–837. DOI: 10.1260/0263617001493846.
  • 20. Pełech R., Milchert E., Wróbel R., 2006. Adsorption dynamics of chlorinated hydrocarbons from multi-component aqueous solution onto activated carbon. J. Hazard. Mater., 137, 1479–1487. DOI: 10.1016/j.jhazmat.2006.04.023.
  • 21. Wang N., Ernle L., Bekö G., Wargocki P., Williams J., 2022a. Emission rates of volatile organic compounds from humans. Environ. Sci. Technol., 56, 4838–4848. DOI: 10.1021/acs.est. 1c08764.
  • 22. Wang X., Cheng H., Ye G., Fan J., Yao F., Wang Y., Jiao Y., Zhu W., Huang H., Ye D., 2022b. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: a review. Chemosphere, 287, 131995. DOI: 10.1016/j.chemosphere.2021.131995.
  • 23. Yagub M.T., Sen T.K., Afroze S., Ang H.M., 2015. Fixed-bed dynamic column adsorption study of methylene blue (MB) onto pine cone. Desalin. Water Treat., 55, 1026–1039. DOI: 10.1080/19443994.2014.924034.
  • 24. Yang C., Miao G., Pi Y., Xia Q., Wu J., Li Z., Xiao J., 2019. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem. Eng. J., 370, 1128–1153. DOI: 10.1016/j.cej.2019.03.232.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27b3fc21-a4b0-4ad7-93bf-7822389249f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.