PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Voltammetric screen-printed carbon sensor modified with multiwalled carbon nanotubes and bismuth film for trace analysis of thallium(I)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper investigates the possibility of using commercially available screen-printed sensors with carbon nanomaterials modified working electrodes to anodic stripping voltammetric determination of trace concentrations of Tl(I). Each working electrode was additionally plated in-situ with a bismuth film (BiF). The highest analytical signal of Tl(I) at potential of -0.65 V (vs. pseudo- reference silver electrode) was achieved at the screen-printed carbon sensor with multiwalled carbon nanotubes and bismuth film modified working electrode (SPCE/MWCNTs/BiF). The calibration curve was linear in the range of Tl(I) concentrations from 1·10-8 to 1·10-6 mol·dm-3 (-0.9 V, 180 s). The developed procedure of Tl(I) determination at this sensor allowed to achieve the low limits of detection and quantification of Tl(I), 2.8·10-9 and 9.3·10-9 mol·dm-3 respectively. The method was used to determine thallium in the spiked water samples from the Vistula river.
Rocznik
Strony
1422--1428
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Maria Curie-Skłodowska University, Faculty of Chemistry, Department of Analytical Chemistry and Instrumental Analysis, Lublin, Poland
  • Maria Curie-Skłodowska University, Faculty of Chemistry, Department of Analytical Chemistry and Instrumental Analysis, Lublin, Poland
autor
  • Maria Curie-Skłodowska University, Faculty of Chemistry, Department of Chemical Technology, Lublin, Poland
Bibliografia
  • AFKHAMI, A., BAHIRAEI, A., MADRAKIAN, T., 2016, Gold nanopartlicles/multi-walled carbon nanotubes modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng.C 59, 169–176.
  • BIATA, N. R., DIMPE, K. M., RAMONTJA, J.,MKETO, N., NOMNGONGO, P. N., 2018, Determination of thallium in water samples using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic assisted-dispersive solid phase microextraction, Microchem. J. 137, 214–222.
  • CHEN, S., YAN, J., LI, J., ZHANG, Y., LU, D., 2017, Solid phase extraction with titanium dioxide nanofibers combined with dispersive liquid-liquid microextraction for speciation of thallium prior to electrothermal vaporization ICP-MS. Microchim.Acta 184(2), 2797–2803.
  • CVJETKO, P., CVJETKO, PAVLICA, M., 2010, Thallium toxicity in humans. Arch. Ind. Hygiene Toxicol. 61, 113-121
  • DOMAŃSKA, K., TYSZCZUK-ROTKO, K., 2018, Integrated three-electrode screen-printed sensor modified with bismuth film for voltammetric determination of thallium(I) at the ultratrace level. Anal. Chim. Acta 1036, 16–25.
  • EISSA, S., ALMUSHARRAF, A. Y., ZOUROB, M., 2019, A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mater. Sci. Eng. C101, 423-430.
  • ESCUDERO, L. B., WUILLOUD, R. G., OLSINA, R. A., 2013, Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion-pairing liquid–liquid microextraction and inductively coupled plasma mass spectrometry. J. Hazard. Mater. 244–245, 380–386.
  • GALVAN-ARZATE, S., SANTAMARIA, A., 1998, Thallium toxicity. Toxicol. Lett. 99, 1-13.
  • HUSAKOVA, L., CERNOHORSKY, T., SRAMKOVA, J., HUBACKOVA, K., DOLEZALOVA, I., 2008, Interference free determination of thallium in aqua regia leaches from rocks, soils and sediments by D2-ETAASmethod using mixed palladium–citric acid–lithiumchemical modifier. Anal. Chim. Acta 614, 38–45.
  • JORGE, E. O., NETO, M. M. M., ROCHA, M. M., 2007, A mercury-free electrochemical sensor for the determination of thallium(I) based on the rotating-disc bismuth film electrode. Talanta 72, 1392–1399.
  • KARBOWSKA, B., 2016, Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environ. Monitor. Assess.188, 1–19.
  • KAZANTZIS, G., 2000, Thallium in the environment and health effects. Environ. Geochem. Health 22, 275-280.
  • KOKKINOS, C., RAPTIS, I., ECONOMOU, A., SPELIOTIS, T., 2010, Determination of trace Tl(I) by anodic stripping voltammetry on novel disposable microfabricated bismuth-film sensors. Electroanal. 22, 2359–2365.
  • LU, T. H., YANG, H. Y., SUN, I. W., 1999, Square-wave anodic stripping voltammetric determination of thallium(I) at a Nafion: mercury film modified electrode. Talanta 49, 59–68.
  • MUNTEANU, G. G., MUNTEANU, S. G., 2006, Electroanalytical characteristics of a subnanometerthin-film mercury–carbon electrode in anodic stripping voltammetry with a linear high-rate potential sweep: Determination of Tl(I). J. Anal. Chem. 61, 266–272.
  • NASIRI-MAJD, M., TAHER, M. A., FAZELIRAD, H., 2015, Synthesis and application of nano-sized ionic imprinted polymer for the selective voltammetric determination of thallium. Talanta 144, 204-209.
  • PAŁDYNA, J., KRASNODĘBSKA-OSTRĘGA, B., SADOWSKA, M., GOŁĘBIEWSKA, J., 2013, Indirect speciation analysis of thallium in plant extracts by anodic stripping voltammetry. Electroanal. 25, 1926–1932.
  • PANDEY, G. P., SINGH, A. K., PRASAD, S., DESHMUKH, L., ASTHANA, A., 2015, Development of surfactant assisted kinetic method for trace determination of thallium in environmental samples. Microchem. J. 118, 150-157.
  • PETER, A. L. J., VIRARAGHAVAN, T., 2005, Thallium: a review of public health and environmental concerns. Environ. Int. 31, 493–501.
  • RUTYNA, I., KOROLCZUK, M., 2014, Determination of ultratrace thallium(I) by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps. Electroanal. 26, 2639–2643.
  • WALLWORK-BARBER,M. K., LYALL, K., FERENBAUGH,R. W., 1985, Thallium movement in a simple aquatic ecosystem. J. Environ. Sci. Health. Part A: Environ. Sci. Eng. 20, 689–700.
  • WĘGIEL, K., JEDLIŃSKA, K., BAŚ, B., 2016, Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry. J. Hazard. Mater. 310,199–206.
  • ZU, W., WANG, Y., YANG, X. LIU, C., 2017, A portable solution cathode glow discharge-atomic emission spectrometer for the rapid determination of thallium in water samples. Talanta 173, 88–93.Poland.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27af23f6-86aa-49c2-bbe9-201173f30b76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.