Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The determination of the R peak position in the ECG signal helps physicians not only to know the heart rate per minute, but also to monitor the patient’s health related to heart disease. This paper proposes a system to accurately determine the R peak position in the ECG signal. The system consists of a pre-processing block for filtering out noise using a WDFR algorithm and highlighting the amplitude of the R peak and a threshold value is calculated for determining the R peak. In this research, the MIT-BIH ECG dataset with 48 records are used for evaluation of the system. The results of the SEN, +P, DER and ACC parameters related to the system quality are 99.70%, 99.59%, 0.70% and 99.31%, respectively. The obtained performance of the proposed R peak position determination system is very high and can be applied to determine the R peak of the ECG signal measuring devices in practice.
Czasopismo
Rocznik
Tom
Strony
19--30
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
autor
- Department of Industrial Electronics and Biomedical Engineering, HCMC University of Technology and Education, Ho Chi Minh, Vietnam
autor
- Department of Industrial Electronics and Biomedical Engineering, HCMC University of Technology and Education, Ho Chi Minh, Vietnam
autor
- Department of Industrial Electronics and Biomedical Engineering, HCMC University of Technology and Education, Ho Chi Minh, Vietnam
Bibliografia
- [1] Al, Z. M. A., Thapa, K., & Yang, S.-H. (2021). Improving R Peak Detection in ECG Signal Using Dynamic Mode Selected Energy and Adaptive Window Sizing Algorithm with Decision Tree Algorithm. Sensors, 21(19), 6682–6699. https://doi.org/10.3390/s21196682
- [2] Alhussainy, A. M. H., & Jasim, A. D. (2021). Training feedforward neural network using genetic algorithm to diagnose left ventricular hypertrophy. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 18(3), 1285–1291. https://doi.org/10.12928/TELKOMNIKA.v18i3.15225
- [3] Aziz, S., Ahmed, S., & Alouini, M.-S. (2021). ECG-based machine-learning algorithms for heartbeat classification. Scientific Reports, 11(1), 18738-18752. https://doi.org/10.1038/s41598-021-97118-5
- [4] Cai, W., & Hu, D. (2020). QRS Complex Detection Using Novel Deep Learning Neural Networks. IEEE Access, 8, 97082–97089. https://doi.org/10.1109/ACCESS.2020.2997473
- [5] Chen, A., Zhang, Y., Zhang, M., Liu, W., Chang, S., Wang, H., He, J., & Huang, Q. (2020). A Real Time QRS Detection Algorithm Based on ET and PD Controlled Threshold Strategy. Sensors (Basel), 20(14), 4003–4018. https://doi.org/10.3390/s20144003
- [6] Chen, L., Yu, H., Huang, Y., & Jin, H. (2021). ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure. J Healthc Eng, 2021, 5802722–5802730. https://doi.org/10.1155/2021/5802722
- [7] Dang, H., Sun, M., Zhang, G., Qi, X., Zhou, X., & Chang, Q. (2019). A Novel Deep Arrhythmia-Diagnosis Network for Atrial Fibrillation Classification Using Electrocardiogram Signals. IEEE Access, 7, 75577–75590. https://doi.org/10.1109/ACCESS.2019.2918792
- [8] Darmawahyuni, A., Nurmaini, S., Rachmatullah, M. N., Firdaus, F., & Tutuko, B. (2021). Unidirectional-bidirectional recurrent networks for cardiac disorders classification. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 19(3), 902–910. https://doi.org/10.12928/TELKOMNIKA.v19i3.18876
- [9] Jang, J., Park, S., Kim, J.-K., An, J., & Jung, S. (2022). CNN-based Two Step R Peak Detection Method: Combining Segmentation and Regression. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1910–1914). IEEE.
- [10] Kumar, A., Kumar, R., & Pandey, R. K. (2012). ECG Signal Compression using Optimum Wavelet Filter Bank Based on Kaiser Window. Procedia Engineering, 38(1), 2889–2902. https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.338
- [11] Laitala, J., Jiang, M., Syrjälä, E., Naeini, E. K., Airola, A., Rahmani, A. M., Dutt, N. K. & Liljeberg, P. (2020). Robust ECG R-peak detection using LSTM. In SAC '20: Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp. 1104–1111). ACM Digital Library.
- [12] Lee, M., Park, D., Dong, S.-Y., & Youn, I. (2018). A Novel R Peak Detection Method for Mobile Environments. IEEE Access, 6, 51227–51237. https://doi.org/10.1109/ACCESS.2018.2867329
- [13] Lin, C.-C., Chang, H.-Y., Huang, Y.-H., & Yeh, C.-Y. (2019). A Novel Wavelet-Based Algorithm for Detection of QRS Complex. Applied Sciences, 9(10), 2142–2161. https://doi.org/10.3390/app9102142
- [14] Lu, X., Pan, M., & Yu, Y. (2018). QRS Detection Based on Improved Adaptive Threshold. J Healthc Eng, 2018, 5694595–5694604. https://doi.org/10.1155/2018/5694595
- [15] Meqdad, M. N., Abdali-Mohammadi, F., & Kadry, S. (2022). Meta Structural Learning Algorithm with Interpretable Convolutional Neural Networks for Arrhythmia Detection of Multi-Session ECG. IEEE Access, 10, 61410–61425. https://doi.org/10.1109/ACCESS.2022.3181727
- [16] Mohebbanaaz, M., Sai, Y. P., & Kumari, L. V. R. (2021). Detection of cardiac arrhythmia using deep CNN and optimized SVM. Indonesian Journal of Electrical Engineering and Computer Science, 24(2), 217–225. https://doi.org/10.11591/ijeecs.v24.i1
- [17] Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50. https://doi.org/10.1109/51.932724
- [18] Nguyen, T.-N., Nguyen, T.-H., & Ngo, V.-T. (2020). Artifact elimination in ECG signal using wavelet transform. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 18(2), 936–944. https://doi.org/10.12928/telkomnika.v18i2.14403
- [19] Nguyen, T.-N., & Nguyen, T.-H. (2021). Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification. Elektronika ir Elektrotechnika, 27(1), 48–59. https://doi.org/10.5755/j02.eie.27642
- [20] Nguyen, T., Qin, X., Dinh, A., & Bui, F. (2019). Low Resource Complexity R-peak Detection Based on Triangle Template Matching and Moving Average Filter. Sensors, 19(18), 3997–4014. https://doi.org/10.3390/s19183997
- [21] Olanrewaju, R. F., Ibrahim, S. N., Asnawi, A. L., & Altaf, H. (2021). Classification of ECG signals for detection of arrhythmia and congestive heart failure based on continuous wavelet transform and deep neural networks. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1520–1528. https://doi.org/10.11591/ijeecs.v22.i3.pp1520-1528
- [22] Park, J.-S., Lee, S.-W., & Park, U. (2017). R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope. J Healthc Eng, 2017, 4901017–4901032. https://doi.org/10.1155/2017/4901017
- [23] Qin, Q., Li, J., Yue, Y., & Liu, C. (2017). An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm. J Healthc Eng, 2017, 1–14. https://doi.org/10.1155/2017/5980541
- [24] Rahman, N. A. A., & Jambek, A. B. (2019). Biomedical health monitoring system design and analysis. Indonesian Journal of Electrical Engineering and Computer Science, 13(3), 1056–1064. https://doi.org/10.11591/ijeecs.v13.i3.pp1056-1064
- [25] Ribeiro, A. H., Ribeiro, M. H., Paixão, G. M. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., Ferreira, M. P. S., Andersson, C. R., Macfarlane, P. W., Meira, W. Jr., Schön, T. B., & Ribeiro, A. L. P. (2020). Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications, 11(1), 1760–1769. https://doi.org/10.1038/s41467-020-15432-4
- [26] Sharma, L. D., & Sunkaria, R. K. (2016). A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement, 87, 194–204. https://doi.org/10.1016/j.measurement.2016.03.015
- [27] Suboh, M. Z., Jaafar, R., Nayan, N. A., & Harun, N. H. (2020). Shannon Energy Application for Detection of ECG R-peak using Bandpass Filter and Stockwell Transform Methods. Advances in Electrical and Computer Engineering, 20(3), 41–48. https://doi.org/10.4316/AECE.2020.03005
- [28] Wu, M., Lu, Y., Yang, W., & Wong, S. Y. (2021). A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network [Original Research]. Frontiers in Computational Neuroscience, 14, 1–10. https://doi.org/10.3389/fncom.2020.564015
- [29] Xiang, Y., Lin, Z., & Meng, J. (2018). Automatic QRS complex detection using two-level convolutional neural network. BioMedical Engineering OnLine, 17(1), 13. https://doi.org/10.1186/s12938-018-0441-4
- [30] Zahid, M. U., Kiranyaz, S., Ince, T., Devecioglu, O. C., Chowdhury, M. E. H., Khandakar, A., Tahir, A., & Gabbouj, M. (2021). Robust R-Peak Detection in Low-Quality Holter ECGs using 1D Convolutional Neural Network. IEEE Transactions on Biomedical Engineering, 69(1), 119–128. https://doi.org/10.1109/TBME.2021.3088218
- [31] Zalabarria, U., Irigoyen, E., Martinez, R., & Lowe, A. (2020). Online robust R-peaks detection in noisy electrocardiograms using a novel iterative smart processing algorithm. Applied Mathematics and Computation, 369, 124839–124852. https://doi.org/10.1016/j.amc.2019.124839
- [32] Zhang, Z., Li, Z., & Li, Z. (2020). An Improved Real-Time R-Wave Detection Efficient Algorithm in Exercise ECG Signal Analysis. J Healthc Eng, 2020, 8868685. https://doi.org/10.1155/2020/8868685
- [33] Zhou, P., Schwerin, B., Lauder, B., & So, S. (2020). Deep Learning for Real-time ECG R-peak Prediction. 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS). IEEE.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27acc52a-0500-4f9f-9c42-dbeef0d95080