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 Periodic inspection policy is performed for some degradation systems to 

check their degradation states, whereas it is usually difficult to 

implement on time due to impact of some random factors. Inspections 

and some maintenance actions are implemented in an inspection window 

with random, and thus how to optimize the inspection windows and the 

degradation threshold of the system to perform preventive maintenance 

(PM) are beneficial in practice. To this end, an optimisation of quasi-

periodic inspection and PM policy with inspection window is proposed 

for a degradation system whose degradation followed Wiener process 

with a linear drift. Assume that PM can change the degradation rate and 

inspections are randomly performed in each inspection window. After 

optimisation, the optimal interval of the inspection window, the 

degradation threshold of PM and PM policy are determined by 

minimising the long-term running cost rate of the system. Finally, 

modeling and optimisation are illustrated using the degradation process 

of an axial piston pump, and the sensitivity analysis of some key 

parameters is conducted. 
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1.  Introduction 

Degradation modeling has been widely studied to evaluate the 

reliability in some electronics manufacturing or mechanical 

systems. The performance index of the degenerate system is 

usually assumed to be a quality characteristic that the 

degradation is resulted from a gradual accumulation of damage 

in a system’s life cycle [6, 31, 33]. The failure occurs when the 

accumulative degradation reaches a specified threshold which is 

defined in terms of the requirement of running situation for the 

system. The measurement values are called the degradation data 

which are random values and contain rich reliability information. 

These data are used to evaluate the system reliability in some 

real cases. Stochastic processes are usually applied to describe 

the system degradation. Wherein the Wiener process is one of 

these stochastic processes and some maintenance policies are 

optimised based on the developed model using the measurement 

data [25, 34, 37]. Measurement errors also considered to 

enhance the model accuracy in the acceleration degradation 

process and remaining useful life prediction [10, 26]. As one 

approach to obtain the degradation data, inspection actions are 

conducted to identify the real-time degradation of the system, 

and maintenance decision-making is performed when the 

degradation value reaches a defined threshold. Periodic and 

sequential inspections have been widely studied, and used in 

some tests of electronic system [5, 16, 23, 28]. However, the 
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inspection action of some systems is unable to be implemented 

on time due to some random factors, such as transportation 

cycles, maintenance ability and supply of some spare parts, 

which makes a periodic inspection to be a random event 

distributed in each inspection window, and also renders the 

periodic inspection to be a quasi-periodic event. Therefore, how 

to obtain the optimal quasi-periodic inspection policy with an 

inspection window, determine the optimal PM threshold and 

corresponding policy for the system with degradation 

performance needs to be discussed deeply. 

Inspection policies have been discussed in the past years. 

Nakagawa et al. [21] reviewed these research before 2010, and 

summarized them as periodic and non-inspection. Some 

developments are made in recent years for periodic inspection 

policy. Munford and Shahani[20] considered a one-parameter 

policy which has the property of decreasing (increasing) 

intervals between successive inspection times if the system has 

an increasing (decreasing) failure rate. Naoto et al., [12] 

discussed an inspection policy for the modified inspection model 

considering the system failure due to any inspection and 

obtained the nearly optimal inspection policy. Levitin et al. [13] 

modeled non-repairable systems subject to a delay-time failure 

process involving hidden and fatal failures in two stages, and 

scheduled inspections is performed to detect the hidden failure. 

Driessen et al. [7] studied a mono-unit system that is 

characterized by three distinct deterioration states, and PM is 

triggered by a given number of inspection which is periodical 

imperfect. Cavalcante et al. [4] built a model of inspection of  

a protection system, in which the inspection outcome provides 

imperfect information of the state of the system, and the 

preventive replacement is conducted based on the inspection 

result. Zhang et al.[36] investigated a PM policy for a three-state 

system considering both imperfect inspections and imperfect 

repairs, in which cost rate and reliability of the system are 

derived by a recursive method. Moakedi et al. [17] modeled  

a block-based inspection policy for a multi-unit system with 

stochastic dependence, in which some units may develop  

a hidden failure and others may experience healthy, defective 

and revealed failures, and block-based inspection policy was 

considered to detect and fix both defects and hidden failures. Jin 

et al. [11] considered an integrated inspection policy, which 

combines perfect and imperfect inspections and is flexible in 

that the frequencies of imperfect inspections need not be 

common for all perfect inspections periods. Zhao et al. [39] 

developed a maintenance model for a mono-unit system with 

atypical degradation path, of which the pattern can be influenced 

by inspections. In the model, the system degradation is assumed 

to decrease by a random value instantaneously, while the 

degrading rate is elevated after each inspection. Seyedhosseini 

et al. [24] introduced an optimal periodic inspection policy for  

a two-unit system, in which the failure of the first component is 

hidden and the second component has three work states. 

Non-periodic inspection policy, such as sequential or random 

inspection, is performed for some systems which often work for 

a job with random working times [21]. Cao et al. [2] proposed  

a PM model which subjects to sequential inspection for a three-

stage failure process, and two-level sequential inspections, 

postponed maintenance and opportunistic maintenance are 

considered in the PM model. Babishin et al., [1] introduced  

a k-out-of-n:G system whose components subject to soft and 

hard failures, both failures are inspected non-periodically and 

maintained by replacement and minimal repair. Xiao et al., [32] 

considered a mono-unit system that may fail due to either hard 

failures or soft failures, and the wait time of the system was 

utilized to conduct inspections and maintenance. Yue and Gao 

[35] considered a deteriorating operating system which executes 

a job with random working times, of which the occurrence of the 

failure follows Geometric process and is detected by random 

inspection action. Castro and Landesa [3] introduced of a new 

model to characterize the dependence between degradation 

processes and implementation of a condition-based maintenance 

strategy considering non-periodic inspection times. Zhao and 

Nakagawa [40] optimised a random inspection policy 

considering random procedure times, compared it with periodic 

inspection and computed a modified checking cost for random 

inspection, and defined first, last and overtime policies for 

inspections in a decision-making. Raza and Ulansky [22] 

described a mathematical model of predictive maintenance 

based on prognostics and health management, proposed a new 

method to determine the optimal periodicity of predictive 

inspection, and showed that the predictive maintenance is 

unconditionally more efficient than corrective maintenance by 

numerical examples. It can be found that most research 

considered the inspection interval as a fixed value or as a random 

time according with the production period. To convenience 

production management, maintenance window is performed to 

implement maintenance actions, whereas the influence factors 

are complex while not single[9]. To consider these influences, 

maintenance window is viewed as a feasible policy to obtain the 

performance state of some degradation systems. Mosheiov et al., 

[19] studied scheduling problems for two-machine flow shop 

and open shop with a maintenance start window to minimize the 

makespan. Mahdi et al., [18] focused on specifying maintenance 

opportunity window (MOW) in job-shop production systems, 

and developed mathematical models and formulae to determine 

the MOW. Zhang and Yang [38] proposed a state-based 

maintenance policy with multifunctional maintenance windows 

to handle failure mechanisms of a multistate industrial asset with 

environmental disturbance. In the maintenance window, the 

inspection can be scheduled according to the short-term 

requirements of production. 

It can be found from above studies that most inspection 

policies are implemented based on the system running time or 

its job cycle. The job cycle-based inspection policy considers the 

production process, though the detection result of the inspection 

is the same as time-based policy. For running time-based 

inspection policy, the time interval of the inspection is a fixed or 

a sequential decrease value. Time-based inspection policy, such 

as periodic or sequential inspection, is convenience for the 

management of the maintenance and it yet can find the 

degradation state of the system. The similarity of these two 

policies is to inspect the degradation state by the inspection, and 

the difference is that the inspection interval is fixed or random. 

Some research studied inspection policy in multi-state system 

for condition-base maintenance policy, few of them considered 

inspection policy for continuous degradation system and 

inspection window. Thus, how to determine the optimal period 

of some inspection windows and the degradation threshold for 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

PM are helpful to some real cases. Aiming at the performance 

degradation system, this study proposes a quasi-periodic 

inspection and PM policy for a continuous degradation system 

with inspection window. Assume that the system degradation 

process is based on the Wiener process with a linear drift, and 

inspections are implemented in the inspection windows with 

random. The PM and replacement threshold, PM number and the 

period of the inspection window are implemented are 

determined by the maintenance policy optimisation. Finally, the 

feasibility of the model is illustrated through a real case study on 

the degradation process of an axial piston pump. 

The remaining parts of this study are organized as follows. In 

Section 2, the system degradation is described by a Wiener 

stochastic process model. Section 3 is devoted to describe the 

maintenance policy modelling and optimization. Section 4 

provides a real case study about the degradation process of an 

axial piston pump to illustrate the proposed maintenance policy. 

Conclusions are drawn in Section 5. 

For ease of reference, some notations are stated as follows: 

aj the PM factor of the jth PM interval 

B(t) the standard Brownian motion 

C the total maintenance cost of the 

replacement cycle 

Ci the inspection cost 

Cf the failure replacement cost. 

Cr the preventive replacement cost 

f(t) the probability density function 

g(t) the system long-running cost rate 

function 

l the failure threshold of the system 

performance 

N the number of PM 

R(t) the reliability function 

τi the time of the i-th inspection of PM 

T the period of the inspection window 

w The PM threshold of the system 

performance 

W the length of inspection window 

X(t) the system degradation performance 

Yi The PM interval of the i-th PM 

Y the total length of the replacement 

cycle 

μ the drift parameter 

σ the diffusion parameter 

2. Degradation model 

Wiener process is an independent incremental process, and is 

widely used in the degradation modelling for some systems, of 

which some performance indexes can be detected by inspections. 

It can describe the non-monotonic performance degradation 

process and has good computational analysis ability in the field 

of engineering [27, 29]. 

Let the stochastic process {𝑋(𝑡): 𝑡 ∈ 𝑅+}  denote the 

underlying degradation process of the system over the running 

time t. Herein, we consider a general linear underlying 

degradation process, where the degradation state X(t) with a 

linear drift at t is expressed as: 

𝑋(𝑡) = 𝜇𝑡 + 𝜎𝐵(𝑡)   (1) 

where μ denotes the drift coefficient, σ represents the diffusion 

coefficient, and {B(t): t≥0} is the standard Brownian motion 

process with σB(t)~N(0, σ2t) for t>0, which is used to describe 

time-correlated structure. Wiener process is not monotonously 

increasing but the mean degradation is linearly increasing in t, 

i.e., E(X(t)|μ)=μt. 

The standard Wiener process {B(t): t≥0} is characterised by 

the following properties: 

(1) B(0)=0; 

(2) B(t) has independent increments: for every t>0, the future 

increments B(t+u)-B(t), u≥0, are independent of the past values 

B(s), s<t. 

(3) B(t) has Gaussian increments: B(t+u)-B(t) is normally 

distributed with mean 0 and variance u, B(t)~N(0, t); 

(4) B(t) has continuous paths: B(t) is continuous in t. 

Let l(l>0) be the degradation threshold of the system 

performance. Assume that the degradation process of the system 

performance is subject to the above linear Wiener motion with  

a drift. The system fails and then a replacement is to be 

performed when the first hitting time of Wiener process {X(t), 

t≥0} reaches or exceeds the failure the threshold l, the 

corresponding lifetime is ℒ, which is defined as 

ℒ = 𝑖𝑛𝑓{𝑡: 𝑋(𝑡)  ≥ 𝑙|𝑋(0) < 𝑙} 

Assume that the degradation process {X(t), t≥0} starts at ℏ with 

X(ℏ)=xℏ. If the degradation process {X(t), t≥0} is first hitting the 

threshold at a certain time t(t>ℏ) exactly, then the probability that 

such a process crossed the threshold level before time t is 

assumed to be negligible. 

For {X(t), t≥0}, μt is a continuous function of t in [0,∞), the 

probability density function(PDF) of ℒ can be formulated under 

above assumption as [8, 14, 27], 

𝑓(𝑡) =
𝑙

√2𝜋𝜎2𝑡3
𝑒𝑥𝑝 (−

(𝑙−𝜇𝑡)2

2𝜎2𝑡
)  (2) 

According to the PDF, the reliability function R(t) can be 

obtained as bellow, 

𝑅(𝑡) = 𝑃(ℒ > 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡

 

= 𝛷 (−
𝜇𝑡−𝑙

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝜇𝑙

𝜎2
)𝛷 (

−𝜇𝑡−𝑙

𝜎√𝑡
) (3) 

where Ф(·) is the cumulative distribution function (CDF) of 

a standard normal distribution. 

Let a degradation test be performed on n systems, and the test 

degradation data for the i-th equipment at the jth time be 

recorded as xi,j. Then, the increment of measured degradation 

data for the i-th equipment between the jth and (j-1)th is ∆𝑥𝑖,𝑗 =

𝑥𝑖,𝑗 − 𝑥𝑖,𝑗−1 , and ∆𝑡𝑖,𝑗 = 𝑡𝑖,𝑗 − 𝑡𝑖,𝑗−1 . Then, the parameters of 

Wiener process can be estimated by the maximum likelihood 

method, and the likelihood function can be written as, 

𝐿(𝜇, 𝜎2) = ∏ ∏
1

√2𝜎2𝜋𝛥𝑡𝑖𝑗

𝑚𝑖
𝑗=1

𝑛
𝑖=1 𝑒𝑥𝑝 (−

(𝛥𝑥𝑖𝑗−𝜇𝛥𝑡𝑖𝑗)
2

2𝜎2𝛥𝑡𝑖𝑗
)             (4) 

The maximum likelihood estimates for the drift coefficient μ and 

the diffusion parameter σ can be obtained as follows, 

𝜇
∧
=

∑ 𝑥𝑖𝑚𝑖
𝑛
𝑖=1

∑ 𝑡𝑖𝑚𝑖
𝑛
𝑖=1

    (5) 

𝜎
∧2 =

1

∑ 𝑚𝑖
𝑛
𝑖=1

(∑ ∑
(𝛥𝑥𝑖𝑗)

2

𝛥𝑡𝑖𝑗
−

(∑ 𝑥𝑖𝑚𝑖
𝑛
𝑖=1 )

2

∑ 𝑡𝑖𝑚𝑖
𝑛
𝑖=1

𝑚𝑖
𝑗=1

𝑛
𝑖=1 )      (6) 

According to above formulas, the reliability model can be 

obtained by the tested degradation data of the system. Based on 

the reliability model, some maintenance policies can be 
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developed for the system. 

 

 

 

3. Maintenance Policy Modelling and Optimisation 

3.1 Introduction and assumptions of maintenance process 

For degraded equipment, the degenerative status of a system can 

be detected by an auto-detection system or an inspection policy. 

About auto-detection system, we will discuss in our following 

study. Herein, we discuss inspection policy. As mentioned in the 

Section 1, a periodic inspection action usually is influenced by 

some random factors and is implemented in an inspection 

window. Thus, the periodic inspection plans are randomly 

distributed in the inspection windows and exhibited as a quasi-

periodic inspection. Consequently, the jth inspected time is 

marked as τi, the length of the inspection window is W which is 

a constant, and the length of the inspection interval is T, which 

starts from t=0 or t=τi. A PM is performed when the inspected 

degradation index reaches the threshold w(w<l). A preventive 

replacement is performed after (N-1)th PM when the inspected 

degradation index firstly reaches or exceeds the threshold w.  

A failure replacement is conducted when the inspected 

degradation index firstly reaches or exceeds the failure threshold 

l. The inspection processes of the i-th PM interval is shown on 

Figure 1, where Yi is the i-th PM interval.  

 
Fig. 1 The i-th PM interval. 

According to the maintenance process, there are four cases 

in the maintenance process which are shown as Figure 2-5. 

Figure 2 exhibits that a failure replacement is performed before 

the i-th (0≤i≤N-1) PM and some quasi-periodic inspections are 

conducted within each PM interval. It can be found that the 

degradation index of the (j-1)th inspection X(τj-1)<w and X(τj)≥l 

within the i-th PM interval. Then, a failure replacement is 

conducted at τR in the i-th PM interval. 

 
Fig.2 Failure Replacement. 

Figure 3 displays that the degradation index within [w, l) can 

be detected by the last inspection in each PM interval, which 

triggers i(i=N-1) times PM. 

 
Fig.3 Preventive Maintenance. 

After N-1 times PM, two cases may arise: a failure 

replacement or a preventive replacement. Figure 4 shows a 

failure replacement is triggered if the degradation index of the 

jth inspection is X(τj)>l within the (N-1)th PM interval. 

 
Fig.4 Failure Replacement. 

Figure 5 displays that a preventive replacement is conducted 

if the degradation of the jth inspection is w≤X(τj)<l within the 

(N-1)th PM interval. 

 
Fig.5 Preventive Replacement. 

According to the above description and specifications, the 

maintenance model for the system is based on the following five 
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assumptions: 

1) A quasi-periodic inspection is implemented to obtain the 

degradation index of the system in each PM interval. The i-th 

inspection time τi is to obey the uniform distribution within the 

i-th inspection window which has a given length W. The 

inspection is perfect and can truly reflect the system’s 

degradation state, and the inspection cost is a constant Ci. 

2) The system is running normally and maintenance is not 

necessary if 0≤ X(t) ≤w. Additionally, the system fails and is 

triggered a failure replacement when the degradation index is 

X(t)≥l. A failure replacement is conducted with a constant cost 

Cf. 

3) A PM is performed if the degradation index of the system 

is w≤X(t)<l, where w is the threshold of PM. The PM is 

imperfect and can decrease the degradation index to zero, 

whereas it can enlarge the degradation rate. The degradation rate 

of the system before and after a PM meets μj=ajμ, where μj is the 

drift parameter of the jth PM interval, and aj is the PM factor of 

the jth PM interval. The corresponding cost is a constant Cp. 

4) A preventive replacement is performed when the system 

has undergone N−1 times PM and firstly reaches the threshold 

for preventive replacement, and the corresponding cost is  

a constant Cr. 

5) The time for inspection, PM, preventive and failure 

replacement can be negligible. 

3.2 Maintenance Policy Modelling 

According to the maintenance process and assumptions, the 

quasi-periodic inspection and PM policy is considered for the 

mono-unit repairable system. One replacement for the system 

can be viewed as one renewing with the related cost. The process 

can be regarded as a renewal reward process, and we can get the 

system long-running cost rate according to the renewal reward 

theory. 

𝑔(𝑇, 𝑤, 𝑁) = 𝑙𝑖𝑚
𝑡→+∞

𝐶(𝑡)

𝑡
=

𝐸(𝐶)

𝐸(𝑌)
   (7) 

where g(•) is the system long-running cost rate function. E(C) 

and E(Y) are the expectation of the maintenance cost and the 

length of the replacement cycle in the replacement interval. T is 

the period of the inspection window, w is the threshold value of 

the system degradation for the PM, and N is the times of PM. 

On the basis of the maintenance process and model 

assumptions, the maintenance cost during the renewal cycle can 

be expressed as follows: 

𝐶 = ∑{∏(
𝑃(𝑤 < 𝑋𝑘(𝜏1) < 𝑙)

+𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑘(𝑉 + 𝜏𝑁) < 𝑙)
)

𝑗−1

𝑘=1

𝑁−1

𝑗=1

(
𝐼(𝑙<𝑋𝑗(𝜏1))(𝐶𝑓) + 𝐼(𝑤<𝑋𝑗(𝜏1)<𝑙)(𝐶𝑝) + 𝐼(𝑋𝑗(𝑉)<𝑤∩𝑋𝑗(𝑉+𝜏𝑁)>𝑙) (𝐶𝑓 +𝑀𝐶𝑖)

+𝐼(𝑋𝑗(𝑉)<𝑤∩𝑤<𝑋𝑗(𝑉+𝜏𝑁)<𝑙) (𝐶𝑃 +𝑀𝐶𝑖)
)} 

+∏ (
𝑃(𝑤 < 𝑋𝑗(𝜏1) < 𝑙)

+𝑃(𝑋𝑗(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑗(𝑉 + 𝜏𝑁) < 𝑙)
)𝑁−1

𝑗=1 (
𝐼(𝑙<𝑋𝑁(𝜏1))(𝐶𝑓) + 𝐼(𝑤<𝑋𝑁(𝜏1)<𝑙)(𝐶𝑟) + 𝐼(𝑋𝑁(𝑉)<𝑤∩𝑋𝑁(𝑉+𝜏𝑁)>𝑙) (𝐶𝑓 +𝑀𝐶𝑖)

+𝐼(𝑋𝑁(𝑉)<𝑤∩𝑤<𝑋𝑁(𝑉+𝜏𝑁)<𝑙) (𝐶𝑟 +𝑀𝐶𝑖)
)(8) 

Similarly, the renewal cycle length Y can be denoted in the following: 

𝑌 = ∑ {∏(
𝑃(𝑤 < 𝑋𝑘(𝜏1) < 𝑙)

+𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑘(𝑉 + 𝜏𝑁) < 𝑙)
)

𝑗−1

𝑘=1

𝑁−1

𝑗=1

(
𝐼(𝑙<𝑋𝑗(𝜏1))(𝜏1) + 𝐼(𝑤<𝑋𝑗(𝜏1)<𝑙)(𝜏1) + 𝐼(𝑋𝑗(𝑉)<𝑤∩𝑤<𝑋𝑗(𝑉+𝜏𝑁)<𝑙) (𝑉 + 𝜏𝑁)

+𝐼(𝑋𝑗(𝑉)<𝑤∩𝑋𝑗(𝑉+𝜏𝑁)>𝑙) (𝑉 + 𝜏𝑁)
)} 

+∏(
𝑃(𝑤 < 𝑋𝑗(𝜏1) < 𝑙)

+𝑃(𝑋𝑗(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑗(𝑉 + 𝜏𝑁) < 𝑙)
)

𝑁−1

𝑗=1

(
𝐼(𝑙<𝑋𝑁(𝜏1))(𝜏1) + 𝐼(𝑤<𝑋𝑁(𝜏1)<𝑙)(𝜏1) + 𝐼(𝑋𝑁(𝑉)<𝑤∩𝑤<𝑋𝑁(𝑉+𝜏𝑁)<𝑙) (𝑉 + 𝜏𝑁)

+𝐼(𝑋𝑁(𝑉)<𝑤∩𝑋𝑁(𝑉+𝜏𝑁)>𝑙) (𝑉 + 𝜏𝑁)
) 

= ∑{∏(
𝑃(𝑤 < 𝑋𝑘(𝜏1) < 𝑙)

+𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑘(𝑉 + 𝜏𝑁) < 𝑙)
)

𝑗−1

𝑘=1

𝑁−1

𝑗=1

(𝐼(𝑤<𝑋𝑗(𝜏1))(𝜏1) + 𝐼(𝑋𝑗(𝑉)<𝑤∩𝑤<𝑋𝑗(𝑉+𝜏𝑁))(𝑉 + 𝜏𝑁))} 

+∏ (
𝑃(𝑤 < 𝑋𝑗(𝜏1) < 𝑙)

+𝑃(𝑋𝑗(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑗(𝑉 + 𝜏𝑁) < 𝑙)
)𝑁−1

𝑗=1 (𝐼(𝑤<𝑋𝑁(𝜏1))(𝜏1) + 𝐼(𝑋𝑁(𝑉)<𝑤∩𝑤<𝑋𝑁(𝑉+𝜏𝑁)) (𝑉 + 𝜏𝑁))   （9） 

where IQ(Z) is an indicator function of the set Q, that is, 

𝐼𝑄(𝑍) = {
1,             𝑖𝑓 𝑍 ∈ 𝑄
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

τi (i=1, 2, ..., M) represents time of the i-th inspection in one inspection window [T, T+W]. Thus, 𝑉 = ∑ 𝜏𝑖
𝑀−1
𝑖=1 . To compute g(T,w,N), it 

needs to get the expectation E(C) and E(Y). 
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𝐸(𝐶) = ∑

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

∏

(

 
 

1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇

(𝑤 < 𝑋𝑘(𝜏1) < 𝑙)𝑑𝜏1

+
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

(𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑋𝑘(𝑉 + 𝜏𝑁) > 𝑙))𝑑𝑉𝑑𝜏𝑁
)

 
 

𝑗−1

𝑘=1

(

 
 
 
 
 
 
 
𝐶𝑓
1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇

(𝑙 < 𝑋𝑗(𝜏1)) 𝑑𝜏1 + 𝐶𝑝
1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇

(𝑤 < 𝑋𝑗(𝜏1) < 𝑙)𝑑𝜏1

+∑ ((𝐶𝑓 +𝑀𝐶𝑖)
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

(𝑃(𝑋𝑗(𝑉) < 𝑤 ∩ 𝑋𝑗(𝑉 + 𝜏𝑁) > 𝑙)) 𝑑𝑉𝑑𝜏𝑁)

+∞

𝑀=2

+∑ ((𝐶𝑝 +𝑀𝐶𝑖)
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

(𝑃(𝑋𝑗(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑗(𝑉 + 𝜏𝑁) < 𝑙)) 𝑑𝑉𝑑𝜏𝑁)

+∞

𝑀=2 )

 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 𝑁−1

𝑗=1

 

+

(

 
 
∏

(

 
 

1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇

(𝑤 < 𝑋𝑗(𝜏1) < 𝑙)𝑑𝜏1

+
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

(𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑋𝑘(𝑉 + 𝜏𝑁) > 𝑙))𝑑𝑉𝑑𝜏𝑁
)

 
 

𝑁−1

𝑗=1

)

 
 

 

{
 
 

 
 𝐶𝑓

1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇
(𝑙 < 𝑋𝑁(𝜏1))𝑑𝜏1 + 𝐶𝑝

1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇
(𝑤 < 𝑋𝑁(𝜏1) < 𝑙)𝑑𝜏1

+∑ ((𝐶𝑓 +𝑀𝐶𝑖)
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇
(𝑃(𝑋𝑁(𝑉) < 𝑤 ∩ 𝑋𝑁(𝑉 + 𝜏𝑁) > 𝑙))𝑑𝑉𝑑𝜏𝑁)

+∞
𝑀=2

+∑ ((𝐶𝑝 +𝑀𝐶𝑖)
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)(𝑃(𝑋𝑁(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑁(𝑉 + 𝜏𝑁) < 𝑙))𝑑𝑉𝑑𝜏𝑁

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇
)+∞

𝑀=2 }
 
 

 
 

  (10) 

The calculation of E(Y) is stated as follow: 

𝐸(𝑌) = ∑

{
 
 
 
 
 

 
 
 
 
 

∏

(

 
 

1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇

(𝑤 < 𝑋𝑘(𝜏1) < 𝑙)𝑑𝜏1

+
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

(𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑋𝑘(𝑉 + 𝜏𝑁) > 𝑙))𝑑𝑉𝑑𝜏𝑁
)

 
 

𝑗−1

𝑘=1

)

 
 

(

 
 

1

𝑊
∫ 𝜏1

𝑇+𝑊

𝑇

𝑃(𝑤 < 𝑋𝑗(𝜏1))𝑑𝜏1

+∑ (
1

𝑊
∫ ∫ (𝑉 + 𝜏𝑁)𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

𝑃 (𝑋𝑗(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑗(𝑉 + 𝜏𝑁)) 𝑑𝑉𝑑𝜏𝑁

+∞

𝑀=2 )

 
 

}
 
 
 
 
 

 
 
 
 
 

𝑁−1

𝑗=1

 

+

(

 
 
∏

(

 
 

1

𝑊
∫ 𝑃
𝑇+𝑊

𝑇

(𝑤 < 𝑋𝑗(𝜏1) < 𝑙)𝑑𝜏1

+
1

𝑊
∫ ∫ 𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇

(𝑃(𝑋𝑘(𝑉) < 𝑤 ∩ 𝑋𝑘(𝑉 + 𝜏𝑁) > 𝑙))𝑑𝑉𝑑𝜏𝑁
)

 
 

𝑁−1

𝑗=1

)

 
 

 

(

1

𝑊
∫ 𝜏1
𝑇+𝑊

𝑇
𝑃(𝑤 < 𝑋𝑁(𝜏1))𝑑𝜏1

+∑ (
1

𝑊

+∞
𝑀=2 ∫ ∫ (𝑉 + 𝜏𝑁)𝑓𝑉(𝑉)

(𝑀−1)(𝑇+𝑊)

(𝑀−1)𝑇

𝑇+𝑊

𝑇
𝑃(𝑋𝑁(𝑉) < 𝑤 ∩ 𝑤 < 𝑋𝑁(𝑉 + 𝜏𝑁))𝑑𝑉𝑑𝜏𝑁)

)  (11) 

 

According to the model assumptions, 𝑉 = ∑ 𝜏𝑖
𝑀−1
𝑖=1  is the sum of 

M−1 independent random variables subjected to the uniform 

distribution, and thus the PDF of V can be expressed as follows: 

𝑓𝑉 =

{
 
 

 
 

1

𝑊𝑀(𝑀−1)!
 

∑ (−1)𝑟(
𝑀
𝑟
)(𝑉 − (𝑀 − 1)𝑇 − 𝑟𝑊)𝑀−1,𝑘

𝑟=0

𝑘𝑊 +𝑀𝑇 ≤ 𝑉 ≤ (𝑘 + 1)𝑊 +𝑀𝑇, 𝑘 = 0,1,⋯ ,𝑀 − 1
0,            Others

  

(12) 

The probability can be calculated as Eq.(13) if the degradation 

index of the system exceeds the failure threshold at the Mth 

inspection τM and less than the PM threshold w at the (M-1)th 

inspection τM-1. 

𝑃(𝑋(𝑉) < 𝑤 ∩ 𝑋(𝑉 + 𝜏𝑀) > 𝑙) = 

(1 − 𝐹𝑇2(𝑉)) (∫ 𝐹𝑙−𝑥(𝜏𝑀)𝑓𝜙(𝑥; 𝑉)𝑑𝑥
𝑤

0
)           (13) 

where, 

𝐹𝑙−𝑥(𝜃) = 𝛷 (
𝑎𝑗𝜇𝜃−(𝑙−𝑥)

𝜎√𝜃
) + 𝑒𝑥𝑝 (

2𝑎𝑗𝜇(𝑙−𝑥)

𝜎2
)𝛷 (

−𝑎𝑗𝜇𝜃−(𝑙−𝑥)

𝜎√𝜃
)       

(14) 

𝑓𝜙(𝑥; 𝑡) =
1

√2𝜋𝜎2𝑡
𝑒𝑥𝑝 (−

(𝑥−𝑎𝑗𝜇𝑡)
2

2𝜎2𝑡
)  (15) 

If the degradation index of the system is between the PM 

threshold w and the failure replacement threshold l at the Mth 

inspection. Then, the probability can be calculated as 

𝑃(𝑋(𝑉) < 𝑤 ∩ 𝑤 < 𝑋(𝑉 + 𝜏𝑀) < 𝑙) = 

(1 − 𝐹𝑇2(𝑉)) ∫ (𝐹w-𝑥(𝜏𝑀) − 𝐹l-𝑥(𝜏𝑀))𝑓𝜙(𝑥; 𝑉)𝑑𝑥
𝑤

0
           (16) 

where 

𝐹w-𝑥(𝜃) = 𝛷 (
𝑎𝑗𝜇𝜃−(𝑤−𝑥)

𝜎√𝜃
) + 𝑒𝑥𝑝 (

2𝑎𝑗𝜇(𝑤−𝑥)

𝜎2
)𝛷 (

−𝑎𝑗𝜇𝜃−(𝑤−𝑥)

𝜎√𝜃
)   (17) 

Considering that g(T,w,N) is complicated function, the optimal 
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T*, w* and N* is difficult to determine via an analytical method. 

To avoid the derivation and differential operation for g(N, T, w), 

Hooke–Jeeves algorithm is used here to determine the optimal 

T*, and w*. Details of the algorithm readers can refer references 

[15]. 

The solving process is shown in the following briefly. 

Step 1: Give a known N beginning from 2 to a limited number 

(Nmax), and use the Hooke–Jeeves algorithm to find the optimal 

solution T*, w* and gmin(T*, w*; N). 

Step 2: Set N=N+1, and use the Hooke–Jeeves algorithm to 

determine the optimal T*, w* and gmin(T*, w*; N). 

Step 3: Go to step 2 if N<Nmax. 

Finally, Fine the smallest gmin(N,T*,w*) for different N, and 

determine the optimal N*. 

4. Case Study and Analysis 

4.1 Case Study 

In this case, we take the performance degradation of a hydraulic 

axial piston pump as an example to illustrate the proposed model. 

As an important power element in a hydraulic system, the 

hydraulic axial piston pump commonly experiences wear in its 

three main friction pairs. The oil film becomes unstable with the 

wear increases, thereby increasing the internal leakage and 

reducing the volume efficiency of the axial piston pump, which 

fails once the oil leakage reaches the threshold. The wear process 

is a degradation process and is difficult to measure directly, 

whereas the total leakage oil can be characterized by the return 

oil of the axial piston pump. Measurement of the return oil 

shows that it is random values and independently incremented 

on the basis of running time. Wang et al.[30] tested the 

degradation process of the axial piston pump by return oil, and 

predicted its remaining useful life. Using the tested degradation 

data, the degradation model is developed by Wiener process with 

a linear drift, where μ=0.0024,σ2=1.2067e-04. 

Assume that the running state of the axial piston pump can 

be obtained via some quasi-periodic inspections in the 

inspection windows, in which inspection randomly distributes 

and followed the uniform distribution. A PM is performed when 

the return oil is between the PM threshold w and the failure 

threshold l. A failure replacement is performed when the return 

oil firstly reaches or exceeds the failure threshold, and  

a preventive replacement is performed after the axial piston 

pump experiences N−1 times PM. Therefore, the inspection and 

maintenance policy is followed the proposed model above. 

Tab.1 Model parameters. 

Items Parameters remarks 

Cr 900¥ / 

Cf 2600¥ / 

Ci 30¥ / 

Cp 300¥ / 

W 20h / 

l 2.8l/min [30] 

aj 1+0.3j (j=1,…,) Assumption 

 

Some parameters used in the proposed model are listed in Table 

1. Then, the three-dimension of (g,w,T) is shown as Fig.6, from 

which the existence of gmin can be found directly. 

 
Fig. 6 Plot of g-w-T. 

The optimal T*, w* and N* can be obtained using the search 

algorithm mentioned above. The optimal result is shown in Table 

2. The optimal period of the inspection window is T*=310h, the 

PM threshold is w*=1.8L/min, and the PM number is N*=4. The 

minimum cost rate is gmin=0.9231. The results mean that the 

axial piston pump can be inspected in each inspection window 

within the length W=20h randomly, the period of inspection 

window is 310h, the axial piston pump is preventively 

maintained if the return oil reaches 1.8L/min and less than 

2.8L/min, and it is replaced when PM number reaches 4 or return 

oil reaches or exceeds 2.8L/min firstly. 

Tab.2 Optimisation results. 

Items gmin T*(h) w*(L/min) 

N=2 

N=3 

N=4 

N=5 

N=6 

1.0672 

0.9928 

0.9231 

1.1124 

1.1144 

360 

340 

310 

240 

240 

1.6 

1.7 

1.8 

2 

2 

4.2 Sensitivity analysis 

In this case, W aj, and l are three key parameters in the model, 

and thus we mainly discuss the sensitivity analysis for the 

optimal results. Results showed that the minimum cost rate gmin, 

the optimal PM number N*, the optimal PM threshold w* and the 

optimal inspection window period T* can be influenced by the 

change of W and aj, and l within a certain range. 

W is the one of the parameters that can be changed by user,  

a reasonable W should be determined based on the above 

analysis and requirement of users. The optimal results with 

different W are computed in Table 3, we can find that gmin is 

increasing and T* is decreasing with the increase of W clearly, 

w* and N* are stable with the change of W. That is to say, the 

increase of W narrows the period of the inspection window, 

whereas it enlarges the failure risk and indirectly causes the 

increment of the system long running cost rate. Thus, users 

should reduce the length of W as much as possible. 
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Tab.3 Relationship between W and T*/w*/N*/gmin. 

W T* w* N* gmin 

10 322 1.8 4 0.9214 

20 310 1.8 4 0.9231 

40 302 1.8 4 0.9285 

60 288 1.8 4 0.9371 

aj describes the effect of PM and is an assumed parameter. From 

Table 4, it can be found that gmin and w* are increasing, N* and 

T* are decreasing rapidly with the increase rate of aj. Decreasing 

of N* means that the whole running time of the axial piston pump 

is shorten. Reduction of T* represents that the frequency of the 

inspection is increased. These results display that improving the 

PM effect is undoubtedly beneficial for users. 

Tab.4 Optimisation results with different aj. 

aj gmin N* w* T* 

1+0.20j 

1+0.25j 

1+0.30j 

1+0.50j 

0.9158 

0.9322 

0.9231 

0.9654 

5 

4 

4 

3 

1.7 

1.7 

1.8 

2.0 

342 

323 

310 

244 

 

The failure threshold l is defined by user according to the 

requirements of the system. In this work, l is the flow of the 

return oil in the axial piston pump, which is in inverse 

proportionto the volumetric efficiency of the axial piston pump. 

l usually is relatively small for aviation field and is relatively 

large in the civilian equipment. The influence of l on optimal 

results is shown as Table 5. It can be found that gmin is decreasing, 

w* and T* are increasing with the rise of l, whereas N* remains 

stable. According these results, a small l need pay a high long 

running cost rate of the system. 

Tab.5 Optimisation results with different l. 

l gmin w* N* T* 

2.4 1.1080 1.5 4 262 

2.6 1.0072 1.7 4 293 

2.8 0.9231 1.8 4 310 

3.0 0.8532 1.9 4 338 

5. Conclusion 

In this study, considering a wide fact that inspections for some 

degradation systems are unable to perform on time and usually 

performed in an inspection window, a maintenance policy of  

a quasi-periodic inspection and PM with inspection windows is 

proposed for a repairable system with a performance 

degradation process that is subject to the Wiener process. By 

minimising the system long-running cost rate, the optimal period 

T*of inspection windows, the degradation threshold w* for PM 

and PM number N* are obtained. The developed model is 

beneficial for making a maintenance schedule, although each 

inspection is a random event. Case study shows that gmin keeps 

increase and T* is getting hitched with the increase of W and aj, 

while keeps opposite trend with the increase of the failure 

threshold l. N* is stable with the increase of W and l, and yet 

decrease with the increase of aj. w* is rising with the increase of 

aj and l, nevertheless it is stable with the change of W. Therefore, 

the length of the inspection window should be reduced as much 

as possible to decrease the system long-term cost rate and 

increase the average working time if the production and 

maintenance ability are allowable. However, considering that  

a certain inspection window length can become more flexible for 

maintenance and production scheduling, users should consider 

W in a comprehensive and multifaceted manner. 

The model developed in this study is also suitable for other 

degradation processes, such as Gaussian Process and Gamma 

processes. The length of inspection window usually limited by 

the production capacity, such as repairman, we will discuss it in 

our future work. 
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