Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Titanium dioxide nanoparticles : application in consumer products, study of properties and determination by single particle inductively coupled plasma – mass spectrometry
Języki publikacji
Abstrakty
The rapid growth in the production and use of nanomaterials is observed in recent years. Nanoparticles of titanium dioxide (TiO2NPs) are one of the most frequently used nanomaterials. Sunscreens, food additives, food contact materials and textiles are the major fields of current application of TiO2NPs. Due to increasing use of nanomaterials in daily life and thus increasing exposure to them, concerns have been raised about their safety. Likely routes of human exposure to released TiO2NPs as well as their health and environmental effects are presented in this paper. At present, our knowledge about the risk of nanomaterials is incomplete. However, it is known that toxicity of nanoparticles depends on their size, shape, crystal structure, surface morphology, surface area, charge, concentration and solubility (the possibility of dissolution into ionic forms). Therefore, it is necessary to use several complementary analytical techniques to fully characterize the NPs. Common approaches used for the characterization of nanomaterials include microscopy based techniques e.g. transmission electron microscopy (TEM), X-ray techniques e.g. X-ray diffraction (XRD), methods based on optical properties e.g. dynamic light scattering (DLS). Separation of nanoparticulate and ionic forms of metal can be accomplished using chromatographic techniques (such as high performance liquid chromatography (HPLC), size exclusion chromatography (SEC), hydrodynamic chromatography (HDC)) or capillary electrophoresis (CE). Size-resolved NPs and dissolved (ionic) fractions can be further characterized by on-line detectors, such as ICP MS. Recently, single particle inductively coupled plasma mass spectrometry (sp ICP MS) has been gaining increasing attention as a technique for detection, characterization, and quantification of nanoparticles. This technique provides information on individual particles, including particle size, number size distribution, particle number concentration and mass concentration. In addition, sp ICP MS can distinguish dissolved and nanoparticulate forms of an element. The fundamentals, advantages and limitations of this technique, as well as its application for the characterization and quantification of TiO2NPs in different matrices (consumer products, food and environmental samples) are reviewed in this paper.
Wydawca
Czasopismo
Rocznik
Tom
Strony
367--400
Opis fizyczny
Bibliogr. 126 poz., rys., tab., wykr.
Twórcy
autor
- Uniwersytet w Białymstoku, Instytut Chemii, ul. Ciołkowskiego 1K, 15-245 Białystok
autor
- Uniwersytet w Białymstoku, Instytut Chemii, ul. Ciołkowskiego 1K, 15-245 Białystok
- Uniwersytet w Białymstoku, Instytut Chemii, ul. Ciołkowskiego 1K, 15-245 Białystok
Bibliografia
- [1] The Nanodatebase, http://nanodb.dk/en/ [dostęp: 2018-11-30].
- [2] O. Bondarenko, K. Juganson, A. Ivask, K. Kasements, M. Mortimer, A. Kahru, Arch. Toxicol., 2013, 87, 1181.
- [3] S.N.A. Shah, Z. Shah, M. Hussain, M. Khan, Bioinorg. Chem. Appl., 2017, 2017, 1.
- [4] L. Ma, J. Liu, N. Li, J. Wang, Y. Duan, J. Yan, H. Liu, H. Wang, F. Hong, Biomaterials, 2010, 31, 99.
- [5] A.E.W.E. Ghareeb, H. Hamdi, A.E. Bakry, H.A. Hmela, Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 510.
- [6] J. Sun, Q. Zhang, Z. Wang, B. Yan, Int. J. Mol. Sci., 2013, 14, 9319.
- [7] E. Rollerova, J. Tulinska, A. Liskova, M. Kuricova, J. Kovriznych, A. Mlynarcikova, A. Kiss, S. Scsukova, Endocr. Regul., 2015, 49, 97.
- [8] G.M. Bedinger, Titanium mineral concentrates, U.S. Geological Survey, Mineral Commodity Summaries, 2018, str. 177.
- [9] A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Environ. Sci. Technol., 2012, 46, 2242.
- [10] A.K. Venkatesan, R.B. Reed, S. Lee, X. Bi, D. Hanigan, Y. Yang, J.F. Ranville, P. Herckes, P. Westerhoff, Bull. Environ. Contam. Toxicol., 2018, 100, 120.
- [11] S. Candás-Zapico, D.J. Kutscher, M. Montes-Bayón, J. Bettmer, Talanta, 2018, 180, 309.
- [12] F. Xu, Chemosphere, 2018, 212, 662.
- [13] K. Kosmala, R. Szymańska, Kosmos, 2016, 65, 235.
- [14] M. Janus, Application of titanium dioxide, IntechOpen, Londyn 2017.
- [15] M.J. Gázquez, J.P. Bolívar, R. Garcia-Tenorio, F. Vaca, Mater. Sci. Appl., 2014, 5, 441.
- [16] C. Contado, Front. Chem., 2015, 3, 1.
- [17] R.J.B. Peters, G. van Bemmel, Z. Herrera-Rivera, H.P.F.G. Helsper, H.J.P. Marvin, S. Weigel, P.C. Tromp, A.G. Oomen, A.G. Rietveld, H. Bouwmeester, J. Agric. Food Chem., 2014, 62, 6285.
- [18] H. Bodaghi, Y. Mostofi, A. Oromiehie, Z. Zamani, B. Ghanbarzadeh, C. Costa, A. Conte, M.A. Del Nobile, LWT-Food Sci. Technol., 2013, 50, 702.
- [19] Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Phys. Chem. Chem. Phys., 2013, 15, 4844.
- [20] T.A. Egerton, I.R. Tooley, Int. J. Cosmet. Sci.,2012, 34, 117.
- [21] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. de Miguel, L. Bergström, Sci. Technol. Adv. Matter, 2013, 14, 1.
- [22] T.G. Smijs, S. Pavel, Nanotechnol. Sci. Appl., 2011, 4, 95.
- [23] C. Rompelberg, M.B. Heringa, G. van Donkersgoed, J. Drijvers, A. Roos, S. Westenbrink, R. Peters, G. van Bemmel, W. Brand, A.G. Oomen, Nanotoxicology, 2016, 10, 1404.
- [24] F. Li, Q. Li, H. Kim, Appl. Surf. Sci., 2013, 276, 390.
- [25] Ch. Kapridaki, P. Maravelaki-Kalaitzaki, Prog. Org. Coat., 2013, 76, 400.
- [26] G. Rassam, Y. Abdi, A. Abdi, J. Exp. Nanosci., 2012, 7, 468.
- [27] N. Shandilya, O. Le Bihan, Ch. Bressot, M. Morgeneyer, Environ. Sci. Technol., 2015, 49, 2163.
- [28] A. Al-Kattan, A. Wischser, R. Vonbank, S. Brunner, A. Ulrich, S. Zuin, B. Nowack, Environ. Sci.: Processes Impacts, 2013, 15, 2186.
- [29] V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, J. Materiomics, 2017, 3, 3.
- [30] M.M. Mahlambi, C.J. Ngila, B.B. Mamba, J. Nanomater, 2015, 2015, 1.
- [31] A. Kaleta, A. Kołodziej, Rocz. Inż. Bud., 2012, 12, 25.
- [32] S. El-Sherbiny, F. Morsy, M. Samir, O.A. Fouad, Appl. Nanosci., 2014, 4, 305.
- [33] I. Chauhan, P. Mohanty, Cellulose, 2015, 22, 507.
- [34] A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, A. Khademhosseini, S.H. Yun, ACS Nano, 2016, 10, 3042.
- [35] International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Carbon Black, Titanium dioxide and Talc., 2010, 93, 1.
- [36] DEPARTMENT OF HEALTH AND HUMAN SERVICES, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Occupational Exposure to Titanium Dioxide, Cincinnati, 2011.
- [37] M. Shakeel, F. Jabeen, S. Shabbir, M.S. Asghar, M.S. Khan, A.S. Chaudhry, Biol. Trace Elem. Res., 2016, 172, 1.
- [38] J. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou, B. Li, Y. Zhao, Z. Chai, Ch. Chen, Toxicology, 2008, 254, 82.
- [39] D.B. Warheit, T.R. Webb, Ch.M. Sayes, V.L. Colvin, K.L. Reed, Toxicol. Sci., 2006, 91, 227.
- [40] H. Shi, R. Megaye, V. Castranova, J. Zhao, Part. Fibre Toxicol., 2013, 10, 1.
- [41] P.M. Hext, J.A. Tomenson, P. Thompson, Ann. Occup. Hyg., 2005, 49, 461.
- [42] P.A. Schulte, C.L. Geraci, V. Murashov, E.D. Kuempel, R.D. Zumwalde, V. Castranova, M.D. Hoover, L. Hodson, K.F. Martinez, J. Nanopart. Res., 2014, 16, 1.
- [43] A.R. Ribeiro, P.E. Leite, P. Falagan-Lotsch, F. Benetti, C. Micheletti, H.C. Budtz, N.R. Jacobsen, P.N. Lisboa-Filho, L.A. Rocha, D. Kühnel, D. Hristozov, J.M. Granjeiro, NanoImpact, 2017, 8, 59.
- [44] Y. Morimoto, N. Kobayashi, N. Shinohara, T. Myojo, I. Tanaka, J. Nakanishi, J. Occup. Health, 2010, 52, 325.
- [45] A.M. Świdwińska-Gajewska, S. Czerczak, Med. Pr., 2014, 65, 407.
- [46] Scientific Committee on Consumer Safety, OPINION ON Titanium Dioxide (nano form) as UVFilter in sprays (SCCS/1583/17).
- [47] B. Pelaz, G. Charron, Ch. Pfeiffer, Y. Zhao, J.M. de la Fuente, X.-J. Liang, W.J. Parak, P. del Pino, Small, 2013, 9, 1573.
- [48] X. He, W.G. Aker, P.P. Fu, H.-M. Hwang, Environ. Sci.: Nano, 2015, 2, 564.
- [49] D. Yang, Titanium Dioxide: Material for a Sustainable Environment, IntechOpen, Londyn 2018.
- [50] B. Wang, W. Feng, Y. Zhao, Z. Chai, Metallomics, 2013, 5, 793.
- [51] V. Filipe, A. Hawe, W. Jiskoot, Pharm. Res., 2010, 27, 796.
- [52] J. Ryczkowski, Adsorbenty i katalizatory: wybrane technologie a środowisko, Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów 2012.
- [53] A. Barbacki, Mikroskopia elektronowa, Wydawnictwo Politechniki Poznańskiej, Poznań 2003.
- [54] P. de Almeida, J. van Deelen, C. Catry, H. Sneyers, T. Pataki, R. Andriessen, C. van Roost, J.M. Kroon, Appl. Phys. A, 2004, 79, 1819.
- [55] E. Bełtowska-Lehman, Indukowane elektroosadzanie nanokrystalicznych powłok metalicznych i kompozytowych typu Ni-W(Mo)/Al2O3, Polska Akademia Nauk Instytut Metalurgii i Inżynierii Materiałowej, Kraków 2013.
- [56] K. Leopold, A. Philippe, K. Wörle, G.E. Schaumann, Trend. Anal. Chem., 2016, 84, 107.
- [57] A. Rao, M. Schoenenberger, E. Gnecco, Th. Glatzel, E. Meyer, D. Brändlin, L. Scandella, J. Phys.: Conf. Ser., 2007, 61, 971.
- [58] T.A. Egerton, I.R. Tooley, Int. J. Cosmet. Sci., 2014, 36, 195.
- [59] A. Patri, T. Umbreit, J. Zheng, K. Nagashima, P. Goering, S. Francke-Carroll, E. Gordon, J. Weaver, T. Miller, N. Sadrieh, S. McNeil, M. Stratmeyer, J. Appl. Toxicol., 2009, 29, 662.
- [60] M. Cieślak, D. Puchowicz, I. Kamińska, Fibres Text. East. Eur., 2014, 22, 47.
- [61] H. Zhang, J.F. Banfield, Chem. Rev., 2014, 114, 9613.
- [62] V. Parthasarathi, G. Thilagavathi, J. Textil. Appar. Technol. Manag., 2009, 6, 1.
- [63] B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir, 2001, 17, 2664.
- [64] E.O. Oseghe, P.G. Ndungu, S.B. Jonnalagadda, J. Adv. Oxid. Technol., 2015, 18, 253.
- [65] M. Hussain, R. Ceccarelli, D.L. Marchisio, D. Fino, N. Russo, F. Geobaldo, Chem. Eng. J., 2010, 157, 45.
- [66] S. Triebold, G.L. Luvizotto, R. Tolosana-Delgado, T. Zack, H. von Eynatten, Contrib. Mineral. Petrol., 2011, 161, 581.
- [67] V.H. Castrejón-Sánchez, E. Camps, M. Camacho-López, Superficies y Vacio, 2014, 27, 88.
- [68] A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, Appl. Sci., 2017, 7, 1.
- [69] X. Cao, Ch. Ma, Z. Gao, J. Zheng, L. He, D.J. McClements, H. Xiao, J. Agric. Food Chem., 2016, 64, 9436.
- [70] P. Krystek, J. Tentschert, Y. Nia, B. Trouiller, L. Noël, M.E. Goetz, A. Papin, A. Luch, T. Guérin, W.H. de Jong, Anal. Bioanal. Chem., 2014, 406, 3853.
- [71] E.J. Dos Santos, M.P. Dos Santos, A.B. Herrmann, R.E. Sturgeon, Anal. Methods, 2016, 8, 6463.
- [72] M. Golasik, M. Herman, B. Jasiewicz, M. Tęsiorowski, W. Piekoszewski, J. Anal. At. Spectrom., 2014, 29, 1844.
- [73] B. Meermann, V. Nischwitz, J. Anal. At. Spectrom., 2018, 33, 1432.
- [74] J.P.F.G. Helsper, R.J.B. Peters, M.E.M. van Bemmel, Z.E.H. Rivera, S. Wagner, F. von der Kammer, P.C. Tromp, T. Hofmann, S. Weigel, Anal. Bioanal. Chem., 2016, 408, 6679.
- [75] J. Vidmar, R. Milačič, J. Ńčančar, Microchem. J., 2017, 132, 391.
- [76] B. Grzmil, M. Gleń, B. Kic, K. Lubkowski, Ind. Eng. Chem. Res., 2011, 50, 6535.
- [77] Z. Luo, Z. Wang, B. Xu, I.L. Sarakiotis, G. Du Laing, Ch. Yan, J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 2014, 15, 593.
- [78] Ch. Zhang, J. Lohwacharin, S. Takizawa, Sci. Rep., 2017, 7, 1.
- [79] A. López-Serrano, R.M. Olivas, J.S. Landaluze, C. Cámara, Anal. Methods, 2014, 6, 38.
- [80] A. Samontha, J. Shiowatana, A. Siripinyanond, Anal. Bioanal. Chem., 2011, 399, 973.
- [81] R.B. Reed, Ch.P. Higgins, P. Westerhoff, S. Tadjiki, J.F. Ranville, J. Anal. At. Spectrom., 2012, 27, 1093.
- [82] I. López-Heras, Y. Madrid, C. Cámara, Talanta, 2014, 124, 71.
- [83] J.P.F.G. Helsper, R.J.B. Peters, M.E.M. van Bemmel, Z.E.H. Rivera, S. Wagner, F. von der Kammer, P.C. Tromp, T. Hofmann, S. Weigel, Anal. Bioanal. Chem., 2016, 408, 6679.
- [84] F. von der Kammer, S. Legros, E.H. Larsen, K. Loeschner, T. Hofmann, Trend. Anal. Chem., 2011, 30, 425.
- [85] D. Mitrano, J.F. Ranville, K. Neubauer, Inductively coupled plasma – mass spectrometry: an introduction to flow field flow fractionation and coupling to ICP-MS, White paper PerkinElmer, Inc., Shelton, CT, 2011.
- [86] A.L. Rubio, M.J.F. Rovira, M.M. Sanz, L.G. Gómez-Mascaraque, Nanomaterials for food applications, Elsevier, Amsterdam-Kidlington-Cambridge 2019.
- [87] T. Nomizu, S. Kaneco, T. Tanaka, T. Yamamoto, H. Kawaguchi, Anal. Sci., 1993, 9, 843.
- [88] S. Kaneco, T. Nomizu, T. Tanaka, N. Mizutani, H. Kawaguchi, Anal. Sci., 1995, 11, 835.
- [89] T. Nomizu, N. Hoshino, S. Kaneco, H. Hayashi, T. Tanaka, H. Kawaguchi, K. Kitagawa, Anal. Sci., 2001, 17, 61.
- [90] C. Degueldre, P.-Y. Favarger, Colloids Surf. A, 2003, 217, 137.
- [91] C. Degueldre, P.-Y. Favarger, C. Bitea, Anal. Chim. Acta, 2004, 518, 137.
- [92] C. Degueldre, P.-Y. Favarger, Talanta, 2004, 62, 1051.
- [93] C. Degueldre, P.-Y. Favarger, R. Rossé, S. Wold, Talanta, 2006, 68, 623.
- [94] C. Degueldre, P.-Y. Favarger, S. Wold, Anal. Chim. Acta, 2006, 555, 263.
- [95] Dz.Urz. UE 2011 Nr L 275/38 (2011/696/UE).
- [96] F. Laborda, J. Jiménez-Lamana, E. Bolea, J.R. Castillo, J. Anal. At. Spectrom., 2013, 28, 1220.
- [97] D.M. Mitrano, A. Barber, A. Bednar, P. Westerhoff, Ch.P. Higgins, J.F. Ranville, J. Anal. At. Spectrom., 2012, 27, 1131.
- [98] W.W. Lee, W.-T. Chan, J. Anal. At. Spectrom., 2015, 30, 1245.
- [99] Ch. Stephan, K. Neubauer, Single particle inductively coupled plasma mass spectrometry: Understanding how and why. White paper PerkinElmer, Inc., Shelton, CT, 2014.
- [100] M. Yamanaka, K. Yamanaka, T. Itagaki, S. Wilbur, E. McCurdy, Application note Agilent Technologies, Inc., 2015, Publication number: 5991-5891EN.
- [101] H.E. Pace, N.J. Rogers, Ch. Jarolimek, V.A. Coleman, Ch.P. Higgins, J.F. Ranville, Anal. Chem., 2011, 83, 9361.
- [102] A. Hineman, Ch. Stephan, J. Anal. At. Spectrom., 2014, 29, 1252.
- [103] J.W. Olesik, P.J. Gray, J. Anal. At. Spectrom., 2012, 27, 1143.
- [104] S. Gschwind, H. Hagendorfer, D.A. Frick, D. Günther, Anal. Chem., 2013, 85, 5875.
- [105] S. Gschwind, L. Flamigni, J. Koch, O. Borovinskaya, S. Groh, K. Niemax, D. Günther, J. Anal. At. Spectrom., 2011, 26, 1166.
- [106] B. Franze, I. Strenge, C. Engelhard, J. Anal. At. Spectrom., 2012, 27, 1074.
- [107] J. Tuoriniemi, G. Cornelis, M. Hassellöv, J. Anal. At. Spectrom., 2014, 29, 743.
- [108] G. Cornelis, M. Hassellöv, J. Anal. At. Spectrom., 2014, 29, 134,
- [109] X. Bi, S. Lee, J.F. Ranville, P. Sattigeri, A. Spanias, P. Herckes, P. Westerhoff, J. Anal. At. Spectrom., 2014, 29, 1630.
- [110] M. Filella, J. Zhang, M.E. Newman, J. Buffle, Colloids Surf., A, 1997, 120, 27.
- [111] K.J. Schulz, J.H. DeYoung, Jr., R.R. Seal II, D.C. Bradley, Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply, U.S. Geological Survey, Professional Paper 1802 (Chapter T), 2017.
- [112] T.W. May, R.H. Wiedmeyer, At. Spectrosc., 1998, 19, 150.
- [113] R.B. Reed, D.P. Martin, A.J. Bednar, M.D. Montaño, P. Westerhoff, J.F. Ranville, Environ. Sci.: Nano, 2017, 4, 69.
- [114] M. Tharaud, A.P. Gondikas, M.F. Benedetti, F. von der Kammer, T. Hofmann, G. Cornelis, J. Anal. At. Spectrom., 2017, 32, 1400.
- [115] S. Yongyang, W. Wei, L. Zhiming, D. Hu, Z. Guoqing, X. Jiang, R. Xiangjun, J. Anal. At. Spectrom., 2015, 30, 1184.
- [116] S. Wilbur, M. Yamanaka, S. Sannac, White paper Agilent Technologies, Inc., 2015, Publication number: 5991-5516EN.
- [117] T. Bieńkowski, Laborant, 2014, 8, 7.
- [118] F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Environ. Sci. Technol., 2009, 43, 9216.
- [119] N.C. Mueller, B. Nowack, Environ. Sci. Technol., 2008, 42, 4447.
- [120] V. Nischwitz, H. Goenaga-Infante, J. Anal. At. Spectrom., 2012, 27, 1084.
- [121] A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann, F. von der Kammer, Environ. Sci.: Nano, 2017, 4, 307.
- [122] J.H. Barnes, G.D. Schilling, R. Sperline, M.B. Denton, E.T. Young, C.J. Barinaga, D.W. Koppenaal, G.M. Hieftje, Anal. Chem., 2004, 76, 2531.
- [123] Y. Dan, H. Shi, Ch. Stephan, X. Liang, Microchem. J., 2015, 122, 119.
- [124] S. Lee, X. Bi, R.B. Reed, J.F. Ranville, P. Herckes, P. Westerhoff, Environ. Sci. Technol., 2014, 48, 10291.
- [125] A.R. Donovan, C.D. Adams, Y. Ma, C. Stephan, T. Eichholz, H. Shi, Chemosphere, 2016, 144, 148.
- [126] S.P. Bitragunta, S.G. Palani, A. Gopala, S.K. Sarkar, V.R. Kandukuri, Bull. Environ. Contam. Toxicol., 2017, 98, 595.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-279fc907-b3b4-4af4-ab02-0d9d7c481525