Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Projekt i ewaluacja interfejsu człowiek komputer wykorzystującego EMG/EOG
Języki publikacji
Abstrakty
In this paper we present Electromyography/Electrooculography (EMG/EOG) speller. It allows users to write sentences or phrases using blinking exclusively. Eye blinks are detected through simple threshold method. Moreover, the speller is comfortable to use. We based it on Open Source software available for free, as well as low-cost OpenBCI hardware. We measured the performance of the interface in an experiment. The results showed that: (1) symbols were recognised at 90% accuracy rate; (2) 100% of eye blinks was detected; (3) Information Transfer Rate (ITR) we achieved equaled 43,3 bit/min.
W artykule zaprezentowano interfejs człowiek-komputer wykorzystujący Elektromiografię i Elektrookulografię. Interfejs umożliwia pisanie jedynie za pomocą wykrywanych mrugnięć. Do ich wykrywania zastosowano prostą detekcję progową. Ponadto, interfejs jest wygodny w użyciu. Bazuje on na darmowym oprogramowaniu Open Source i tanim urządzeniu OpenBCI. Przeprowadzono eksperyment testujący możliwości interfejsu. Uzyskano następujące rezultaty: (1) 90% skuteczności w rozpoznawaniu znaków; (2) 100% skuteczność w detekcji mrugnięcia; (3) Współczynnik Information Transfer Rate (ITR) wyniósł 43,3 bit/min.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
128--131
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Institute of Psychology, Adam Mickiewicz University in Poznan, ul. A. Szamarzewskiego 89/AB, 60–568 Poznań, Poland
autor
- Institute of Psychology, Adam Mickiewicz University in Poznan, ul. A. Szamarzewskiego 89/AB, 60–568 Poznań, Poland
Bibliografia
- [1] Graimann B., B. Allison and A. Gräser. New applications for non-invasive brain-computer interfaces and the need for engaging training environments Proceedings of the International Conference on Advances in Computer Entertainment, pp 25– 28, 2007.
- [2] Young B. M., Z. Nigogosyan , V.A. Nair, L.M. Walton, J. Song, M. E.Tyler, D. F. Edwards, K. Caldera, J. A. Sattin, J. C. Williams et al. Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability Frontiers in Neuroengineering, 7-18, 2014
- [3] Papastergiou M. Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation Computers & Education, 52, 1– 12, 2009.
- [4] Dyck J., D. Pinelle, B. Brown and C. Gutwin. Learning from games: Hci design innovations in entertainment software. Graphics Interface, pp 237–246, 2003.
- [5] Dudfield H., C. Macklin, R. Fearnley, A. Simpson and P. Hall. Big is better? Human factors issues of large screen displays with military command teams. Human Interfaces in Control Rooms, Cockpits and Command Centres, 304–309, 2001.
- [6] Sellers E., E. Donchin. A P300-based brain–computer interface: initial tests by ALS patients. Clinical neurophysiology, 117, 538–548, 2006
- [7] Birbaumer N. Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 43.6, 517-532, 2006.
- [8] Graimann B, B. Allison and G. Pfurtscheller. Brain–computer interfaces: A gentle introduction Springer: Brain-Computer Interfaces, pp 1–27, 2009.
- [9] Guger C., S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, F. Gramatica and G. Edlinger. How many people are able to control a P300-based brain–computer interface (BCI)?. Neuroscience letters 462.1, 94-98, 2009.
- [10] Donchin E, K. M. Spencer and R. Wijesinghe. The mental prosthesis: assessing the speed of a P300-based braincomputer interface. IEEE transactions on rehabilitation engineering, 8.2, 174-179, 2000.
- [11] Jukiewicz M. and A. Cysewska-Sobusiak. Low-cost evoked potentials detection for brain computer-interfaces. Computer Applications in Electrical Engineering, 13, 102-110, 2015.
- [12] Jones E., T. Oliphant, P. Peterson et al. SciPy: Open source scientific tools for Python. http : //www.scipy.org [Online; accessed 2016-11-18], 2001.
- [13] Van Der Walt S., S. C. Colbert and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13.2, 22-30, 2011.
- [14] Peirce J. W. PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162.1, 8-13, 2007.
- [15] Al Mamun S. A. Emotiv EPOC Bengali brain computer interface controlled by single emokey. International Conference on Emerging of Networking, Communication and Computing Technologies (ICENCCT 2014) Co-jointed with International Conference on Emerging Trends of Computer Science with Educational Technology (ICETCSET 2014)–Zurich, Switzerland, 22–23, 2014.
- [16] Nakanishi M., Y. Mitsukura, Y. Wang, Y. T. Wang and T. P. Jung. Online voluntary eye blink detection using electrooculogram. International Symposium on Nonlinear Theory and Its Applications, Palma, Mallorca, Spain, 2012.
- [17] Vasiljevas M., R. Turˇcinas and R. Damaševiˇcius. Development of emg-based speller. Proceedings of the XV International Conference on Human Computer Interaction, p 7, 2014.
- [18] Vasiljevas M., R. Turcinas and R. Damasevicius. Emg speller with adaptive stimulus rate and dictionary support. Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on (IEEE) pp 227–234, 2014.
- [19] Vasiljevas M. Development of a concept-based EMG-based speller. Dyn,a 82.193, 170-179, 2015.
- [20] Usakli A. B., S. Gurkan, F. Aloise, G. Vecchiato and F. Babiloni Design of a novel efficient human–computer interface: An electrooculagram based virtual keyboard. IEEE Transactions on Instrumentation and Measurement, 59.8, 2099-2108, 2010.
- [21] Zheng M.M., X-R. Gao, Research of Speller System Based on EOG. Chinese Journal of Biomedical Engineering, 6, 2012.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-279f39cf-0ae4-4380-a822-b05540a740a4