PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In-fiber Mach–Zehnder interferometer based on polarization-maintaining fiber for displacement and temperature sensing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A displacement sensor based on polarization-maintaining fiber has been proposed and proved in experiment. The polarization-maintaining fiber (PMF) is sandwiched with two graded-index multimode fibers (GI MMF), which form the Mach–Zehnder interferometer (MZI) sensor. Graded-index multimode fiber serve as an optical coupler for modes conversion. The results show that with the increase of displacement, the spectrum moves to the long wavelength direction, but when temperature increases, the spectrum has a red shift, which means that the displacement and temperature can be measured separately according to the wavelength drift direction. The sensor consists of 4 mm GI MMF and 14 mm PMF, which can exhibit the displacement sensitivity of –9.275 pm/μm in the range of 0–600 μm. In addition, temperature will also affect the sensitivity of displacement measurement, so the sensitivity of the sensor to temperature is also measured. The results show that the selected monitoring dip provides a better temperature sensitivity of 33.605 pm/°C in the range of 35–75°C. The sensor is easy to fabricate and does not has any functional coating, which make it become a good candidate in the industrial field.
Czasopismo
Rocznik
Strony
21--33
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Department of Energy Engineering of Yulin University, Yulin, Shaanxi, 719000, China
  • Department of Energy Engineering of Yulin University, Yulin, Shaanxi, 719000, China
Bibliografia
  • [1] HO D.D., HUYNH T.C., LUU T.H.T., LE T.C., Electro-mechanical impedance-based prestress forc monitoring in prestressed concrete structures, [In] T.Q. Bui, L.T. Cuong, S. Khatir [Eds.] Structural Health Monitoring and Engineering Structures, Lecture Notes in Civil Engineering, Vol. 148, Springer, Singapore 2021: 413–423, DOI: 10.1007/978-981-16-0945-9_33.
  • [2] ZHOU Y., ZHAO C., SHI F., LI Y., DONG X., Angle sensor with two cascading abrupt-taper based on interferometer and single mode optical fiber, Journal of Shanghai University (Natural Science), 2017: 1–6.
  • [3] GAN W., ZHANG C., DAI Y., LIU F., Design and application of the displacement sensor based on fiber Bragg grating, Semiconductor Optoelectronics 33(6), 2012: 795–798.
  • [4] ZHU Y., SHUM P., LU C., LACQUET M.B., SWART P.L., CHTCHERBAKOV A.A., SPAMMER S.J., Temperature insensitive measurements of static displacements using a fiber Bragg grating, Optics Express 11(16), 2003: 1918–1924, DOI: 10.1364/OE.11.001918.
  • [5] SHEN C., ZHONG C., Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement, Sensors and Actuators A: Physical 170(1–2), 2011: 51–54, DOI: 10.1016/j.sna.2011.05.030.
  • [6] Zou Y., Dong X., Lin G., Adhami R., Wide range FBG displacement sensor based on twin-core fiber filter, Journal of Lightwave Technology 30(3), 2012: 337–343, DOI: 10.1109/JLT.2011.2181334.
  • [7] RONG Q., QIAO X., ZHANG J., WANG R., HU M., FENG Z., Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch, Journal of Lightwave Technology 30(11), 2012: 1645–1650, DOI: 10.1109/JLT.2012.2188094.
  • [8] WANG Y., ZHAO C.L., HU L., DONG X., JIN Y., SHEN C., JIN S., A tilt sensor with a compact dimension based on a long-period fiber grating, Review of Scientific Instruments 82(9), 2011: 093106, DOI: 10.1063/1.3639875.
  • [9] PULLTEAP S., SEAT H.C., An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement, Photonic Sensors 5(1), 2015: 50–59, DOI: 10.1007/s13320-014-0209-9.
  • [10] CHEN N.K., FENG Z.Z., WANG J.J., LIAW S.K., CHUI H.C., Interferometric interrogation of the inclination and displacement of tapered fiber Mach-Zehnder interferometers, IEEE Sensors Journal 13(9), 2013: 3437–3441, DOI: 10.1109/JSEN.2013.2265170.
  • [11] ZHOU D.P., WEI L., LIU W.K., LIT J.W.Y., Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method, IEEE Photonics Technology Letters 21(7), 2009: 468–470, DOI: 10.1109/LPT.2009.2013640.
  • [12] CHENG J.N., Mach-Zehnder interferometer based on fiber taper and fiber core mismatch for humidity sensing, Acta Physica Sinica 67(02), 2018: 179–185.
  • [13] FU G.W., LI Q.F., LI Y.P., YANG C.Q., FU X.H., BI W.H., Temperature insensitive curvature sensor of photonic crystal fiber based on core-offset splicing and waist-enlarged fiber taper, Acta Optica Sinica 36(11), 2016: 1106007, DOI: 10.3788/aos201636.1106007.
  • [14] WU Q., HATTA A.M., WANG P., SEMENOVA Y., FARRELL G., Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing, IEEE Photonics Technology Letters 23(2), 2011: 130–132, DOI: 10.1109/LPT.2010.2093515.
  • [15] SCHERMER R.T, COLE J.H., Improved bend loss formula verified for optical fiber by simulation and experiment, IEEE Journal of Quantum Electronics 43(10), 2007: 899–909, DOI: 10.1109/JQE.2007.903364.
  • [16] LI B., JIANG L., WANG S., ZHOU L., XIAO H., TSAI H.-L., Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors, Sensors 11(6), 2011: 5729–5739, DOI: 10.3390/s110605729.
  • [17] FU X.H., XIE H.Y., ZHU H.B., FU G.W., BI W.H., Experimental research of curvature sensor based on tapered photonic crystal fiber Mach-Zehnder interferometer, Acta Optica Sinica 35(5), 2015: 78–83.
  • [18] SU Y., ZHU Y., ZHANG B., ZHOU H., LI J., WANG F., Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak, Optical Fiber Technology 24, 2015: 77–83, DOI: 10.1016/j.yofte.2015.05.005.
  • [19] CHENG J., In-fiber Mach–Zehnder interferometer based on multi-core microfiber for humidity and temperature sensing, Applied Optics 59(3), 2020: 756–763, DOI: 10.1364/AO.378696.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-279f2278-cf83-461b-8501-6eabe2b72f05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.