Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses two models for non-overlapping finite line-segments constructed via the lilypond protocol, operating here on a given array of points P = {Pi} in R2 with which are associated directions {θi}. At time zero, for each and every i, a line-segment Li starts growing at unit rate around the point Pi in the direction θi, the point Pi remaining at the centre of Li; each line-segment, under Model 1, ceases growth when one of its ends hits another line, while under Model 2, its growth ceases either when one of its ends hits another line or when it is hit by the growing end of some other line. The paper shows that these procedures are well defined and gives constructive algorithms to compute the half-lengths Ri of all Li. Moreover, it specifies assumptions under which stochastic versions, i.e. models based on point processes, exist. Afterwards, it deals with the question as to whether there is percolation in Model 1. The paper concludes with a section containing several conjectures and final remarks.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
221--246
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
autor
- Karlsruher Institut für Technologie, 76128 Karlsruhe, Germany
autor
- Karlsruher Institut für Technologie, 76128 Karlsruhe, Germany
Bibliografia
- [1] Yu. A. Andrienko, N. V. Brilliantov, and P. L. Krapivsky, Pattern formation by growing droplets: the touch-and-stop model of growth, J. Stat. Phys. 75 (1994), pp. 507-523.
- [2] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, third edition, Wiley, 2013.
- [3] D. J. Daley, S. Ebert, and R. J. Swift, Size distributions in random triangles, J. Appl. Probab. 51A (2014), pp. 283-295.
- [4] D. J. Daley and G. Last, Descending chains, the lilypond model, and mutual-nearest-neighbour matching, Adv. in Appl. Probab. 37 (2005), pp. 604-628.
- [5] D. J. Daley, C. L. Mallows, and L. A. Shepp, A one-dimensional Poisson growth model with non-overlapping intervals, Stochastic Process. Appl. 90 (2000), pp. 223-241.
- [6] D. J. Daley, D. Stoyan, and H. Stoyan, The volume fraction of a Poisson germ model with maximally non-overlapping spherical grains, Adv. in Appl. Probab. 31(1999), pp. 610-624.
- [7] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, second edition, Volume I: Elementary Theory and Methods, and Volume II: General Theory and Structure, Springer, 2003 and 2008.
- [8] S. Ebert and G. Last, On a class of growth-maximal hard-core processes, Stoch. Models 31 (2015), pp. 153-185.
- [9] E. N. Gilbert, Random plane networks and needle-shaped crystals, in: Applications of Undergraduate Mathematics in Engineering, B. Noble (Ed.), Macmillan, New York 1967.
- [10] N. H. Gray, J. B. Anderson, J. D. Devine, and J. M. Kwasnik, Topological properties of random crack networks, Math. Geol. 8 (1976), pp. 617-626.
- [11] O. Häggström and R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms 9 (1996), pp. 295-315.
- [12] M. Heveling and G. Last, Existence, uniqueness, and algorithmic computation of general lilypond systems, Random Structures Algorithms 29 (2006), pp. 338-350.
- [13] C. Hirsch, On the absence of percolation in a line-segment based lilypond model, Ann. Inst. Henri Poincaré Probab. Statist. 52 (1) (2016), pp. 127-145.
- [14] G. Last, Modern random measures: Palm theory and related models, in: New Perspectives in Stochastic Geometry,W. S. Kendall and I. Molchanov (Eds.), Oxford University Press, Oxford 2010, pp. 77-110.
- [15] G. Last and M. Penrose, Percolation and limit theory for the Poisson lilypond model, Random Structures Algorithms 42 (2013), pp. 226-249.
- [16] T. Schreiber and N. Soja, Limit theory for planar Gilbert tessellations, Probab. Math. Statist. 31 (2011), pp. 149-160.
- [17] J. Stienen, Die Vergröberung von Karbiden in reinen Eisen-Kohlenstoff-Staehlen, Dissertation, RWTH Aachen, 1982.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-279ee511-c497-4d97-a6db-9b4be01227af