Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electrodialysis has been proven effective due to its high selectivity for separating monovalent and divalent ions. This study statistically evaluated the simultaneous electrodialytic recovery of mineral ions from bittern wastewater. The objective was to investigate the effect of cell number, anode materials, and applied voltage to optimize mineral ion recovery. A D-optimality design response surface methodology was performed to estimate the model parameter and identify the factors contributing to mineral ions recovery. The effects of independent variables and their interactions on the responses were investigated using ANOVA. All developed models were highly significant, with a p-value of <0.0001. The applied voltage was considered very important for the recovery process of all mineral ions as it affects the driving force of ion migration through the ion-exchange membrane. The optimization analysis (desirability value of 0.967) revealed 12% Cl–, 14% SO42–, 0.7% Mg2+, and 21% Ca2+ recovery at the combination of 5-cells configuration, graphite electrode, and 9 V.
Czasopismo
Rocznik
Tom
Strony
369--379
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Research Center for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
- Research Center for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
- Civil Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
Bibliografia
- 1. Agresti A. 2002. Categorical Data Analysis, 2nd edn. John Wiley & Sons, Inc., New Jersey
- 2. American Public Health Association. 2005. Standard Methods for The Examination of Water and Wastewater, 21st edn. American Public Health Association, American Water Works Associations, Water Environment Federation, Washington D.C., USA
- 3. Anderson M.J., Whitcomb P.J. 2017. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd edn. CRC Press, Taylor & Francis Group, Florida
- 4. Ariono D., Purwasasmita M., Wenten I.G. 2016. Brine effluents: Characteristics, environmental impacts, and their handling. Journal of Engineering and Technological Science, 48, 367–387. https://doi.org/10.5614/j.eng.technol.sci.2016.48.4.1
- 5. Bagastyo A.Y., Anggrainy A.D., Gatneh S., et al. 2022. Study on optimization of coagulation-flocculation of fish market wastewater using bittern coagulant - response surface methodological approach. Water Science and Technology, 85, 3072–3087. https://doi.org/10.2166/wst.2022.136
- 6. Bagastyo A.Y., Sari P.P.I., Direstiyani L.C. 2021a. Effect of chloride ions on the simultaneous electrodialysis and electrochemical oxidation of mature landfill leachate. Environmental Science and Pollution Research, 28, 63646–63660. https://doi.org/10.1007/s11356-020-11519-z
- 7. Bagastyo A.Y., Sinatria A.Z., Anggrainy A.D., et al. 2021b. Resource recovery and utilization of bittern wastewater from salt production: A review of recovery technologies and their potential applications. Environmental Technology Reviews, 10, 294–321. https://doi.org/10.1080/21622515.2021.1995786
- 8. Barakwan R.A., Hardina T.T., Trihadiningrum Y., Bagastyo A.Y. 2019. Recovery of alum from Surabaya water treatment sludge using electrolysis with carbon-silver electrodes. Journal of Ecological Engineering, 20, 126–133. https://doi.org/10.12911/22998993/109861
- 9. Box G.E.P, Hunter W.G., Hunter J.S. 1978. Statistics For Experimenter: An Introduction to Design, Data Analysis and Model Building. John Wiley & Sons, Inc., USA
- 10. Dave R.H., Ghosh P.K. 2005. Enrichment of bromine in sea-bittern with recovery of other marine chemicals. Industrial and Engineering Chemistry Research, 44, 2903–2907. https://doi.org/10.1021/ie049130x
- 11. Einav R., Harussi K., Perry D. 2002. The footprint of the desalination processes on the environment. Desalination, 152, 141–154. https://doi.org/10.1016/S0011-9164(02)01057-3
- 12. Gacia E., Invers O., Manzanera M., et al. 2007. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuarine Coastal and Shelf Science, 72, 579–590. https://doi.org/10.1016/j.ecss.2006.11.021
- 13. Hikmawati D.N., Bagastyo A.Y., Warmadewanthi I. 2019. Electrodialytic recovery of ammonium and phosphate ions in fertilizer industry wastewater by using a continuous-flow reactor. Journal of Ecological Engineering, 20, 255–263. https://doi.org/10.12911/22998993/109461
- 14. Honarparvar S., Reible D. 2020. Modeling multicomponent ion transport to investigate selective ion removal in electrodialysis. Environmental Science and Ecotechnology, 1, 100007. https://doi.org/10.1016/j.ese.2019.100007
- 15. Kartika S.W.T., Bagastyo A.Y. 2022. Recovery of Ca2+ and SO4 2- from bittern wastewater using electrodialysis method. IOP Conference Series: Earth and Environmental Science, 1095, 012029. https://doi.org/10.1088/1755-1315/1095/1/012029
- 16. Mohammadi R., Tang W., Sillanpää M. 2021. A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis. Desalination, 498, 114626. https://doi.org/10.1016/j.desal.2020.114626
- 17. Montgomery D.C. 2013. Montgomery Design and Analysis of Experiments Eighth Edition. Arizona State University, 8th edn. John Wiley & Sons, Inc., USA
- 18. Nie X.Y., Sun S.Y., Sun Z., et al. 2017. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination, 403, 128–135. https://doi.org/10.1016/j.desal.2016.05.010
- 19. Panagopoulos A., Haralambous K.J. 2020. Environmental impacts of desalination and brine treatment - Challenges and mitigation measures. Marine Pollution Bulletin, 161, 111773. https://doi.org/10.1016/j.marpolbul.2020.111773
- 20. Roberts D.A., Johnston E.L., Knott N.A. 2010. Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water Research, 44, 5117–5128. https://doi.org/10.1016/j.watres.2010.04.036
- 21. Strathmann H. 1986. Electrodialysis. In: Bungay PM, Lonsdale HK, DePinho MN (eds) Synthetic Membranes: Science, Engineering and Applications. Springer, Dordrecht
- 22. Tovar L.R., Gutierrez M.E., Cruz G. 2002. Fluoride content by ion chromatography using a suppressed conductivity detector and osmolality of bitterns discharged into the pacific ocean from a saltworks: feasible causal agents in the mortality of green turtles (Chelonia mydas) in the Ojo de Liebre lagoon, Baja California Sur, Mexico. Analytical Science, 18, 1003–1007. https://doi.org/10.2116/analsci.18.1003
- 23. Wang Y., Huang C., Xu T. 2010. Optimization of electrodialysis with bipolar membranes by using response surface methodology. Journal of Membrane Science, 362, 249–254. https://doi.org/10.1016/j.memsci.2010.06.049
- 24. Ye Z.L., Ghyselbrecht K., Monballiu A., et al. 2018. Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes. Chemosphere, 210, 867–876. https://doi.org/10.1016/j.chemosphere.2018.07.078
- 25. Zhang Y., Wang L., Sun W., et al. 2020. Membrane technologies for Li+/Mg2+ separation from saltlake brines and seawater: A comprehensive review. Journal of Industrial and Engineering Chemistry, 81, 7–23. https://doi.org/10.1016/j.jiec.2019.09.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2793b0bf-8e07-4424-9fc2-0626fe65c840